Increasing signal intensity within the dentate nucleus and globus pallidus on unenhanced T1W magnetic resonance images in patients with relapsing-remitting multiple sclerosis: correlation with cumulative dose of a macrocyclic gadolinium-based contrast agent, gadobutrol

[1]  Daisuke Takenaka,et al.  High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. , 2014, Radiology.

[2]  J. Wardlaw,et al.  Identification of mineral deposits in the brain on radiological images: a systematic review , 2012, European Radiology.

[3]  P. Prassopoulos,et al.  Basal ganglia hyperintensity on T1‐weighted MRI in rendu–osler–weber disease , 2012, Journal of magnetic resonance imaging : JMRI.

[4]  Jeffrey A. Cohen,et al.  Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria , 2011, Annals of neurology.

[5]  S. Mohan,et al.  Differential diagnosis for bilateral abnormalities of the basal ganglia and thalamus. , 2011, Radiographics : a review publication of the Radiological Society of North America, Inc.

[6]  M. Essig,et al.  High-relaxivity contrast-enhanced magnetic resonance neuroimaging: a review , 2010, European Radiology.

[7]  Luca Roccatagliata,et al.  Multiple sclerosis: hyperintense dentate nucleus on unenhanced T1-weighted MR images is associated with the secondary progressive subtype. , 2009, Radiology.

[8]  T. Frenzel,et al.  Long-term retention of gadolinium in the skin of rodents following the administration of gadolinium-based contrast agents , 2009, European Radiology.

[9]  À. Rovira,et al.  MR Imaging Findings in Hepatic Encephalopathy , 2008, American Journal of Neuroradiology.

[10]  T. Frenzel,et al.  Preclinical investigation to compare different gadolinium-based contrast agents regarding their propensity to release gadolinium in vivo and to trigger nephrogenic systemic fibrosis-like lesions , 2008, European Radiology.

[11]  T. Frenzel,et al.  A Preclinical Study to Investigate the Development of Nephrogenic Systemic Fibrosis: A Possible Role for Gadolinium-Based Contrast Media , 2008, Investigative radiology.

[12]  A. Maia,et al.  A Preliminary Study Revealing a New Association in Patients Undergoing Maintenance Hemodialysis: Manganism Symptoms and T1 Hyperintense Changes in the Basal Ganglia , 2007, American Journal of Neuroradiology.

[13]  M. Teng,et al.  Presence of activated microglia in a high-signal lesion on T1-weighted MR images: a biopsy sample re-examined. , 2007, AJNR. American journal of neuroradiology.

[14]  Yong Chul Shin,et al.  High signal intensity on magnetic resonance imaging as a predictor of neurobehavioral performance of workers exposed to manganese. , 2007, Neurotoxicology.

[15]  J. Cheon,et al.  MR imaging of the brain in Wilson disease of childhood: findings before and after treatment with clinical correlation. , 2006, AJNR. American journal of neuroradiology.

[16]  R. Guillevin,et al.  MRI features of neurodegenerative Langerhans cell histiocytosis , 2006, European Radiology.

[17]  M. Tweedle,et al.  Comparison of Gd(DTPA-BMA) (Omniscan) Versus Gd(HP-DO3A) (ProHance) Relative to Gadolinium Retention in Human Bone Tissue by Inductively Coupled Plasma Mass Spectroscopy , 2006, Investigative radiology.

[18]  Rohit Bakshi,et al.  Magnetic Resonance Imaging of Iron Deposition in Neurological Disorders , 2006, Topics in magnetic resonance imaging : TMRI.

[19]  P. Anslow,et al.  Differential diagnosis of intracranial lesions with high signal on T1 or low signal on T2-weighted MRI. , 2003, Clinical radiology.

[20]  T. Taoka,et al.  Magnetic resonance imaging shows delayed ischemic striatal neurodegeneration , 2003, Annals of neurology.

[21]  M. Bellin,et al.  Currently used non-specific extracellular MR contrast media , 2003, European Radiology.

[22]  F. Shellock,et al.  Safety of magnetic resonance imaging contrast agents , 1999, Journal of magnetic resonance imaging : JMRI.

[23]  R. Lauffer,et al.  Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. , 1999, Chemical reviews.

[24]  P. Lai,et al.  Hyperintense basal ganglia on T1-weighted MR imaging. , 1999, AJR. American journal of roentgenology.

[25]  Steven M LeVine,et al.  Iron deposits in multiple sclerosis and Alzheimer's disease brains , 1997, Brain Research.

[26]  A. Barkovich,et al.  Evolution of high-intensity basal ganglia lesions on T1-weighted MR in neurofibromatosis type 1. , 1996, AJNR. American journal of neuroradiology.

[27]  P. Wedeking,et al.  Biodistribution of Radiolabeled, Formulated Gadopentetate, Gadoteridol, Gadoterate, and Gadodiamide in Mice and Rats , 1995, Investigative radiology.

[28]  G. Davies-Jones,et al.  MR imaging in acute multiple sclerosis: ringlike appearance in plaques suggesting the presence of paramagnetic free radicals. , 1992, AJNR. American journal of neuroradiology.

[29]  P. Burger,et al.  Non-heme mechanisms for T1 shortening: pathologic, CT, and MR elucidation. , 1992, AJNR. American journal of neuroradiology.

[30]  S. Mirowitz,et al.  Hyperintense basal ganglia on T1-weighted MR images in patients receiving parenteral nutrition. , 1991, Radiology.

[31]  D. V. van Thiel,et al.  Chronic acquired hepatic failure: MR imaging of the brain at 1.5 T. , 1991, AJNR. American journal of neuroradiology.

[32]  R. Henkelman,et al.  High signal intensity in MR images of calcified brain tissue. , 1991, Radiology.

[33]  R. Herfkens,et al.  Magnetic resonance imaging in multiple sclerosis: Decreased signal in thalamus and putamen , 1987, Annals of neurology.

[34]  B. Drayer,et al.  Reduced signal intensity on MR images of thalamus and putamen in multiple sclerosis: increased iron content? , 1987, AJR. American journal of roentgenology.

[35]  W Craelius,et al.  Iron deposits surrounding multiple sclerosis plaques. , 1982, Archives of pathology & laboratory medicine.

[36]  J. Hennel,et al.  Proton Magnetic Relaxation and Protein Hydration , 1963, Nature.

[37]  T. Taoka,et al.  Hyperintense dentate nucleus on unenhanced T1-weighted MR images is associated with a history of brain irradiation. , 2011, Radiology.

[38]  T. Morioka,et al.  Radiation-Induced Brain Calcification: Paradoxical High Signal Intensity in T1-Weighted MR Images , 2000, Acta Neurochirurgica.