Toward the ergodicity of p-adic 1-Lipschitz functions represented by the van der Put series☆
暂无分享,去创建一个
[1] K. Mahler. p-adic numbers and their functions , 1981 .
[2] Vladimir Anashin,et al. Characterization of ergodicity of p-adic dynamical systems by using the van der Put basis , 2011 .
[3] Ekaterina Yurova,et al. Criteria of measure-preserving for p-adic dynamical systems in terms of the van der Put basis , 2012 .
[4] K. Mahler,et al. An Interpolation Series for Continuous Functions of a p-adic Variable. , 1958 .
[5] Fabien Durand,et al. Minimal polynomial dynamics on the set of 3‐adic integers , 2009, 1208.2016.
[6] Adi Shamir,et al. Cryptographic Applications of T-Functions , 2003, Selected Areas in Cryptography.
[7] Andrei Khrennikov,et al. T-functions revisited: new criteria for bijectivity/transitivity , 2014, Des. Codes Cryptogr..
[8] Ekaterina Yurova. Van der Put basis and p-adic dynamics , 2010 .
[9] Andrei Khrennikov,et al. Applied Algebraic Dynamics , 2009 .
[10] W. H. Schikhof. Ultrametric Calculus: An Introduction to p-Adic Analysis , 1984 .
[11] Rudolf Lide,et al. Finite fields , 1983 .
[12] Zifeng Yang. Cn-Functions over completions of Fr[T] at finite places of Fr(T) , 2004 .
[13] H. Niederreiter,et al. Finite Fields: Encyclopedia of Mathematics and Its Applications. , 1997 .
[14] Dongdai Lin,et al. Ergodic theory over F2[[T]] , 2012, Finite Fields Their Appl..
[15] Владимир Сергеевич Анашин,et al. Равномерно распределенные последовательности целых $p$-адических чисел@@@Uniformly distributed sequences of $p$-adic integers , 2002 .
[16] М В Ларин,et al. Транзитивные полиномиальные преобразования колец вычетов@@@Transitive polynomial transformations of residue class rings , 2002 .
[17] Sangtae Jeong. Characterization of ergodicity of T-adic maps on F2〚T〛 using digit derivatives basis , 2013 .
[18] M. Van Der Put. Algébres de Fonctions Continues p-Adiques. II , 1968 .
[19] Alexander L. Gavrilyuk,et al. On graphs in which the intersection of neighborhoods of vertices from every 3-coclique is a clique , 2011 .
[20] K. Conrad,et al. Finite Fields , 2018, Series and Products in the Development of Mathematics.