Toward the ergodicity of p-adic 1-Lipschitz functions represented by the van der Put series☆

Abstract Yurova (2010) [17] and Anashin et al. (2011 [3] , preprint [4] ) characterize the ergodicity of a 1-Lipschitz function on Z 2 in terms of the van der Put expansion. Motivated by their recent work, we provide the sufficient conditions for the ergodicity of such a function defined on a more general setting Z p . In addition, we provide alternative proofs of two criteria (because of Anashin et al., 2011 [3] , preprint [4] and Yurova, 2010 [17] ) for an ergodic 1-Lipschitz function on Z 2 , represented by both the Mahler basis and the van der Put basis.

[1]  K. Mahler p-adic numbers and their functions , 1981 .

[2]  Vladimir Anashin,et al.  Characterization of ergodicity of p-adic dynamical systems by using the van der Put basis , 2011 .

[3]  Ekaterina Yurova,et al.  Criteria of measure-preserving for p-adic dynamical systems in terms of the van der Put basis , 2012 .

[4]  K. Mahler,et al.  An Interpolation Series for Continuous Functions of a p-adic Variable. , 1958 .

[5]  Fabien Durand,et al.  Minimal polynomial dynamics on the set of 3‐adic integers , 2009, 1208.2016.

[6]  Adi Shamir,et al.  Cryptographic Applications of T-Functions , 2003, Selected Areas in Cryptography.

[7]  Andrei Khrennikov,et al.  T-functions revisited: new criteria for bijectivity/transitivity , 2014, Des. Codes Cryptogr..

[8]  Ekaterina Yurova Van der Put basis and p-adic dynamics , 2010 .

[9]  Andrei Khrennikov,et al.  Applied Algebraic Dynamics , 2009 .

[10]  W. H. Schikhof Ultrametric Calculus: An Introduction to p-Adic Analysis , 1984 .

[11]  Rudolf Lide,et al.  Finite fields , 1983 .

[12]  Zifeng Yang Cn-Functions over completions of Fr[T] at finite places of Fr(T) , 2004 .

[13]  H. Niederreiter,et al.  Finite Fields: Encyclopedia of Mathematics and Its Applications. , 1997 .

[14]  Dongdai Lin,et al.  Ergodic theory over F2[[T]] , 2012, Finite Fields Their Appl..

[15]  Владимир Сергеевич Анашин,et al.  Равномерно распределенные последовательности целых $p$-адических чисел@@@Uniformly distributed sequences of $p$-adic integers , 2002 .

[16]  М В Ларин,et al.  Транзитивные полиномиальные преобразования колец вычетов@@@Transitive polynomial transformations of residue class rings , 2002 .

[17]  Sangtae Jeong Characterization of ergodicity of T-adic maps on F2〚T〛 using digit derivatives basis , 2013 .

[18]  M. Van Der Put Algébres de Fonctions Continues p-Adiques. II , 1968 .

[19]  Alexander L. Gavrilyuk,et al.  On graphs in which the intersection of neighborhoods of vertices from every 3-coclique is a clique , 2011 .

[20]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.