A Competitive Swarm Optimizer for Large Scale Optimization

In this paper, a novel competitive swarm optimizer (CSO) for large scale optimization is proposed. The algorithm is fundamentally inspired by the particle swarm optimization but is conceptually very different. In the proposed CSO, neither the personal best position of each particle nor the global best position (or neighborhood best positions) is involved in updating the particles. Instead, a pairwise competition mechanism is introduced, where the particle that loses the competition will update its position by learning from the winner. To understand the search behavior of the proposed CSO, a theoretical proof of convergence is provided, together with empirical analysis of its exploration and exploitation abilities showing that the proposed CSO achieves a good balance between exploration and exploitation. Despite its algorithmic simplicity, our empirical results demonstrate that the proposed CSO exhibits a better overall performance than five state-of-the-art metaheuristic algorithms on a set of widely used large scale optimization problems and is able to effectively solve problems of dimensionality up to 5000.

[1]  Xin Yao,et al.  Large scale evolutionary optimization using cooperative coevolution , 2008, Inf. Sci..

[2]  Shinn-Ying Ho,et al.  OPSO: Orthogonal Particle Swarm Optimization and Its Application to Task Assignment Problems , 2008, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[3]  YaoXin,et al.  Large scale evolutionary optimization using cooperative coevolution , 2008 .

[4]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[5]  Gary G. Yen,et al.  Cultural-Based Multiobjective Particle Swarm Optimization , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[6]  Yaochu Jin,et al.  A multi-swarm evolutionary framework based on a feedback mechanism , 2013, 2013 IEEE Congress on Evolutionary Computation.

[7]  Frans van den Bergh,et al.  A NICHING PARTICLE SWARM OPTIMIZER , 2002 .

[8]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[9]  Xiaodong Li,et al.  Cooperatively Coevolving Particle Swarms for Large Scale Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[10]  Jing J. Liang,et al.  Dynamic multi-swarm particle swarm optimizer , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[11]  Ponnuthurai Nagaratnam Suganthan,et al.  Benchmark Functions for the CEC'2013 Special Session and Competition on Large-Scale Global Optimization , 2008 .

[12]  Raymond Ros,et al.  A Simple Modification in CMA-ES Achieving Linear Time and Space Complexity , 2008, PPSN.

[13]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization: A short review , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[14]  Xiaodong Li,et al.  Comparing lbest PSO niching algorithms using different position update rules , 2010, IEEE Congress on Evolutionary Computation.

[15]  R. Eberhart,et al.  Fuzzy adaptive particle swarm optimization , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[16]  Yiming Yang,et al.  A Comparative Study on Feature Selection in Text Categorization , 1997, ICML.

[17]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[18]  Xin Yao,et al.  Multilevel cooperative coevolution for large scale optimization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[19]  Zhi-Hui Zhan,et al.  An Efficient Resource Allocation Scheme Using Particle Swarm Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[20]  Shang-Jeng Tsai,et al.  Solving large scale global optimization using improved Particle Swarm Optimizer , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[21]  Bernhard Sendhoff,et al.  Fitness Approximation In Evolutionary Computation - a Survey , 2002, GECCO.

[22]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[23]  M. Clerc,et al.  The swarm and the queen: towards a deterministic and adaptive particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[24]  Jun Zhang,et al.  Adaptive Particle Swarm Optimization , 2008, ANTS Conference.

[25]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[26]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[27]  Xiaodong Li,et al.  Erratum to "Niching Without Niching Parameters: Particle Swarm Optimization Using a Ring Topology" [Feb 10 150-169] , 2010, IEEE Trans. Evol. Comput..

[28]  Hitoshi Iba,et al.  Particle swarm optimization with Gaussian mutation , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[29]  Alex Alves Freitas,et al.  A hybrid particle swarm/ant colony algorithm for the classification of hierarchical biological data , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[30]  Andries Petrus Engelbrecht,et al.  Measuring exploration/exploitation in particle swarms using swarm diversity , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[31]  Xiaodong Li,et al.  Niching Without Niching Parameters: Particle Swarm Optimization Using a Ring Topology , 2010, IEEE Transactions on Evolutionary Computation.

[32]  Ponnuthurai N. Suganthan,et al.  A novel concurrent particle swarm optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[33]  Ran Cheng,et al.  Particle Swarm Optimizer with Time-Varying Parameters based on a Novel Operator , 2011 .

[34]  Y. Rahmat-Samii,et al.  Particle swarm, genetic algorithm, and their hybrids: optimization of a profiled corrugated horn antenna , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[35]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[36]  Jun Zhang,et al.  Orthogonal Learning Particle Swarm Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[37]  Reinhard Männer,et al.  Parallel Problem Solving from Nature — PPSN III , 1994, Lecture Notes in Computer Science.

[38]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[39]  Alireza Alfi,et al.  Parameter Identification Based on a Modified PSO Applied to Suspension System , 2010, J. Softw. Eng. Appl..

[40]  René Thomsen,et al.  A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[41]  Andries Petrus Engelbrecht,et al.  Measuring Diversity in the Cooperative Particle Swarm Optimizer , 2012, ANTS.

[42]  Juan Luis Fern Stochastic Stability Analysis of the Linear Continuous and Discrete PSO Models , 2011 .

[43]  Marco Dorigo,et al.  Ant colony optimization theory: A survey , 2005, Theor. Comput. Sci..

[44]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[45]  James Kennedy,et al.  Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[46]  J. Kennedy,et al.  Population structure and particle swarm performance , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[47]  Ponnuthurai N. Suganthan,et al.  A Distance-Based Locally Informed Particle Swarm Model for Multimodal Optimization , 2013, IEEE Transactions on Evolutionary Computation.

[48]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[49]  Hao Gao,et al.  A New Particle Swarm Algorithm and Its Globally Convergent Modifications , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[50]  Thomas Stützle,et al.  Frankenstein's PSO: A Composite Particle Swarm Optimization Algorithm , 2009, IEEE Transactions on Evolutionary Computation.

[51]  Dervis Karaboga,et al.  A survey: algorithms simulating bee swarm intelligence , 2009, Artificial Intelligence Review.

[52]  Bo Liu,et al.  Improved particle swarm optimization combined with chaos , 2005 .

[53]  James Kennedy,et al.  The particle swarm: social adaptation of knowledge , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[54]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[55]  Ying Lin,et al.  Particle Swarm Optimization With an Aging Leader and Challengers , 2013, IEEE Transactions on Evolutionary Computation.

[56]  Patrick Siarry,et al.  Particle swarm and ant colony algorithms hybridized for improved continuous optimization , 2007, Appl. Math. Comput..

[57]  Bernhard Sendhoff,et al.  Generalizing Surrogate-Assisted Evolutionary Computation , 2010, IEEE Transactions on Evolutionary Computation.

[58]  Teresa Wu,et al.  An Adaptive Particle Swarm Optimization With Multiple Adaptive Methods , 2013, IEEE Transactions on Evolutionary Computation.

[59]  Zhen Ji,et al.  DNA Sequence Compression Using Adaptive Particle Swarm Optimization-Based Memetic Algorithm , 2011, IEEE Transactions on Evolutionary Computation.

[60]  Hussein A. Abbass,et al.  Robustness Against the Decision-Maker's Attitude to Risk in Problems With Conflicting Objectives , 2012, IEEE Transactions on Evolutionary Computation.

[61]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[62]  Kenneth A. De Jong,et al.  A Cooperative Coevolutionary Approach to Function Optimization , 1994, PPSN.

[63]  Idel Montalvo,et al.  A diversity-enriched variant of discrete PSO applied to the design of water distribution networks , 2008 .

[64]  Andries Petrus Engelbrecht,et al.  Locating multiple optima using particle swarm optimization , 2007, Appl. Math. Comput..

[65]  José Neves,et al.  The fully informed particle swarm: simpler, maybe better , 2004, IEEE Transactions on Evolutionary Computation.

[66]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[67]  P. Suganthan Particle swarm optimiser with neighbourhood operator , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[68]  Xiaodong Li,et al.  Benchmark Functions for the CEC'2010 Special Session and Competition on Large-Scale , 2009 .

[69]  Gary G. Yen,et al.  Diversity-based Information Exchange among Multiple Swarms in Particle Swarm Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[70]  Chia-Feng Juang,et al.  A hybrid of genetic algorithm and particle swarm optimization for recurrent network design , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[71]  Xiao-Feng Xie,et al.  DEPSO: hybrid particle swarm with differential evolution operator , 2003, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483).

[72]  Andries Petrus Engelbrecht,et al.  A Cooperative approach to particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[73]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[74]  Ivor W. Tsang,et al.  A Hybrid PSO-BFGS Strategy for Global Optimization of Multimodal Functions , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[75]  Y. Volkan Pehlivanoglu,et al.  A New Particle Swarm Optimization Method Enhanced With a Periodic Mutation Strategy and Neural Networks , 2013, IEEE Transactions on Evolutionary Computation.

[76]  Keisuke Kameyama,et al.  Particle Swarm Optimization - A Survey , 2009, IEICE Trans. Inf. Syst..