Fast radio burst dispersion measures and rotation measures and the origin of intergalactic magnetic fields

We investigate the possibility of measuring intergalactic magnetic fields using the dispersion measures and rotation measures of fast radio bursts. With Bayesian methods, we produce probability density functions for values of these measures. We distinguish between contributions from the intergalactic medium, the host galaxy, and the local environment of the progenitor. To this end, we use constrained, magnetohydrodynamic simulations of the local Universe to compute lines-of-sight integrals from the position of the Milky Way. In particular, we differentiate between predominantly astrophysical and primordial origins of magnetic fields in the intergalactic medium. We test different possible types of host galaxies and probe different distribution functions of fast radio burst progenitor locations inside the host galaxy. Under the assumption that fast radio bursts are produced by magnetars, we use analytic predictions to account for the contribution of the local environment. We find that less than 100 fast radio bursts from magnetars in stellar-wind environments hosted by starburst dwarf galaxies at redshift z ≳ 0.5 suffice to discriminate between predominantly primordial and astrophysical origins of intergalactic magnetic fields. However, this requires the contribution of the Milky Way to be removed with a precision of ≈1 rad m−2. We show the potential existence of a subset of fast radio bursts whose rotation measures carry information on the strength of the intergalactic magnetic field and its origins.

[1]  V. Springel,et al.  MAGNETIC FIELDS IN COSMOLOGICAL SIMULATIONS OF DISK GALAXIES , 2013, 1312.2620.

[2]  U. Hopp,et al.  Magnetization of the Intergalactic Medium by Primeval Galaxies , 1999 .

[3]  Justin L. Jonas,et al.  MeerKAT—The South African Array With Composite Dishes and Wide-Band Single Pixel Feeds , 2009, Proceedings of the IEEE.

[4]  Star Counts Redivivus. IV. Density Laws through Photometric Parallaxes , 2002, astro-ph/0206323.

[5]  K. Ferrière The interstellar environment of our galaxy , 2001, astro-ph/0106359.

[6]  C. Kouveliotou,et al.  Formation rates and evolution histories of magnetars , 2019, Monthly Notices of the Royal Astronomical Society.

[7]  C. Flynn,et al.  Are all fast radio bursts repeating sources? , 2019, Monthly Notices of the Royal Astronomical Society.

[8]  M. Rupen,et al.  DEEP RADIO CONTINUUM IMAGING OF THE DWARF IRREGULAR GALAXY IC 10: TRACING STAR FORMATION AND MAGNETIC FIELDS , 2011, 1108.0401.

[9]  L. Rezzolla,et al.  Classical and Quantum Gravity , 2002 .

[10]  H. Falcke,et al.  Constraints on the low frequency spectrum of FRB 121102 , 2019, Astronomy & Astrophysics.

[11]  Jin-lin Han,et al.  Observing Interstellar and Intergalactic Magnetic Fields , 2017 .

[12]  L. Widrow,et al.  Origin of galactic and extragalactic magnetic fields , 2002, astro-ph/0207240.

[13]  D. C. Backer,et al.  Arecibo 430 MHz Pulsar Polarimetry: Faraday Rotation Measures and Morphological Classifications , 2003, astro-ph/0310073.

[14]  Wenbin Lu,et al.  Fast radio burst source properties from polarization measurements , 2018, Monthly Notices of the Royal Astronomical Society.

[15]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[16]  J. Moran,et al.  To appear in the Astrophysical Journal Letters Preprint typeset using L ATEX style emulateapj v. 10/09/06 AN UNAMBIGUOUS DETECTION OF FARADAY ROTATION IN SAGITTARIUS A* , 2006 .

[17]  J. Vallée A possible excess rotation measure and large-scale magnetic field in the Virgo Supercluster of galaxies , 1990 .

[18]  Bing Zhang A POSSIBLE CONNECTION BETWEEN FAST RADIO BURSTS AND GAMMA-RAY BURSTS , 2013, 1310.4893.

[19]  Jun Xu,et al.  Extragalactic dispersion measures of fast radio bursts , 2015, 1504.00200.

[20]  A. Bolatto,et al.  Molecular Gas in the Low-Metallicity, Star-forming Dwarf IC 10 , 2006, astro-ph/0602056.

[21]  O. Wucknitz,et al.  Detection of microgauss coherent magnetic fields in a galaxy five billion years ago , 2017, 1708.07844.

[22]  Simon J. Lilly,et al.  Strong magnetic fields in normal galaxies at high redshift , 2008, Nature.

[23]  T. Joseph W. Lazio,et al.  The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102 , 2017, 1701.01100.

[24]  J. I. Katz,et al.  Fast Radio Bursts---A Brief Review: Some Questions, Fewer Answers , 2016, 1604.01799.

[25]  F. Mannucci,et al.  Are long gamma-ray bursts biased tracers of star formation? Clues from the host galaxies of the Swift/BAT6 complete sample of LGRBs I. Stellar mass at z < 1 ? , 2014, 1409.7064.

[26]  Ievgen Vovk,et al.  Evidence for Strong Extragalactic Magnetic Fields from Fermi Observations of TeV Blazars , 2010, Science.

[27]  IC 10: More evidence that it is a blue compact dwarf , 2001, astro-ph/0103066.

[28]  R. P. Eatough,et al.  The SUrvey for Pulsars and Extragalactic Radio Bursts – II. New FRB discoveries and their follow-up. , 2017, 1711.08110.

[29]  E. Keane,et al.  Detecting highly-dispersed bursts with next-generation radio telescopes , 2013, 1308.4797.

[30]  T. R. Seshadri,et al.  Primordial magnetic field limits from the CMB trispectrum: Scalar modes and Planck constraints , 2013, 1312.5308.

[31]  A. Ganguly,et al.  Dense magnetized plasma associated with a fast radio burst , 2015, Nature.

[32]  U. Pen,et al.  LOCAL CIRCUMNUCLEAR MAGNETAR SOLUTION TO EXTRAGALACTIC FAST RADIO BURSTS , 2015, 1501.01341.

[33]  T. Joseph W. Lazio,et al.  Fast Radio Burst Tomography of the Unseen Universe , 2019, 1903.06535.

[34]  A. Piro,et al.  The Dispersion and Rotation Measure of Supernova Remnants and Magnetized Stellar Winds: Application to Fast Radio Bursts , 2018, The Astrophysical Journal.

[35]  E. Berger,et al.  Unveiling the engines of fast radio bursts, superluminous supernovae, and gamma-ray bursts , 2018, Monthly Notices of the Royal Astronomical Society.

[36]  A. Loeb,et al.  Explaining the Statistical Properties of Fast Radio Bursts with Suppressed Low-frequency Emission , 2018, The Astrophysical Journal.

[37]  J. Katz Fast radio bursts , 2018, Progress in Particle and Nuclear Physics.

[38]  Devin W. Silvia,et al.  ENZO: AN ADAPTIVE MESH REFINEMENT CODE FOR ASTROPHYSICS , 2013, J. Open Source Softw..

[39]  B. Gaensler,et al.  MAGNETIC FIELDS IN LARGE-DIAMETER H ii REGIONS REVEALED BY THE FARADAY ROTATION OF COMPACT EXTRAGALACTIC RADIO SOURCES , 2011, 1106.0931.

[40]  D. Higdon,et al.  Astrophysical Journal, in press Preprint typeset using L ATEX style emulateapj v. 11/12/01 A GLOBAL PROBE OF COSMIC MAGNETIC FIELDS TO HIGH REDSHIFTS , 2022 .

[41]  Susumu Inoue Probing the cosmic reionization history and local environment of gamma‐ray bursts through radio dispersion , 2003 .

[42]  Y. Niino Fast Radio Bursts’ Recipes for the Distributions of Dispersion Measures, Flux Densities, and Fluences , 2018, 1801.06578.

[43]  C. Baugh,et al.  Evolution of galactic magnetic fields , 2018, Monthly Notices of the Royal Astronomical Society.

[44]  D. Wickramasinghe,et al.  Origin and evolution of magnetars , 2008, 0807.2106.

[45]  O. Salafia,et al.  Resolving the Decades-long Transient FIRST J141918.9+394036: An Orphan Long Gamma-Ray Burst or a Young Magnetar Nebula? , 2019, The Astrophysical Journal.

[46]  M. Steinmetz,et al.  Cosmicflows Constrained Local UniversE Simulations , 2015, 1510.04900.

[47]  F. Vazza,et al.  Simulations of ultra-high energy cosmic rays in the local Universe and the origin of cosmic magnetic fields , 2017, 1710.01353.

[48]  J. Hessels,et al.  X-rays from the mode-switching PSR B0943+10 , 2017, Proceedings of the International Astronomical Union.

[49]  Bing Zhang,et al.  Are There Multiple Populations of Fast Radio Bursts? , 2017, 1703.09232.

[50]  J. Han,et al.  Redshift evolution of extragalactic rotation measures , 2014, 1405.5087.

[51]  J. Prochaska,et al.  Probing Galactic Halos with Fast Radio Bursts , 2019, Monthly Notices of the Royal Astronomical Society.

[52]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[53]  Bing Zhang,et al.  Second Repeating FRB 180814.J0422+73: Ten-year Fermi-LAT Upper Limits and Implications , 2019, The Astrophysical Journal.

[54]  M. Mclaughlin,et al.  A Bright Millisecond Radio Burst of Extragalactic Origin , 2007, Science.

[55]  N. Podraza,et al.  Approach for extracting complex dielectric function spectra in weakly-absorbing regions , 2014 .

[56]  G. Chabrier The Initial Mass Function: From Salpeter 1955 to 2005 , 2004, astro-ph/0409465.

[57]  Matthew McQuinn,et al.  LOCATING THE “MISSING” BARYONS WITH EXTRAGALACTIC DISPERSION MEASURE ESTIMATES , 2013, 1309.4451.

[58]  H. Zinnecker,et al.  The initial mass function 50 years later , 2005 .

[59]  E. Berger,et al.  Associating Fast Radio Bursts with Their Host Galaxies , 2017, 1705.02998.

[60]  R. Lynch,et al.  An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102 , 2018, Nature.

[61]  G. W. Pratt,et al.  Planck 2015 results: XIX. Constraints on primordial magnetic fields , 2015, 1502.01594.

[62]  X. Siemens,et al.  UvA-DARE ( Digital Academic Repository ) Fast Radio Burst Discovered in the Arecibo Pulsar ALFA Survey , 2014 .

[63]  E. Keane The future of fast radio burst science , 2018, Nature Astronomy.

[64]  Curtis N. James Limits on the population of repeating fast radio bursts from the ASKAP/CRAFT lat50 survey , 2019, Monthly Notices of the Royal Astronomical Society.

[65]  L. Campanelli Helical Magnetic Fields from Inflation , 2008, 0805.0575.

[66]  T. Dzhatdoev,et al.  Intergalactic electromagnetic cascades in the magnetized Universe as a tool of astroparticle physics , 2018, 1808.06758.

[67]  B. Garilli,et al.  THE zCOSMOS 10k-BRIGHT SPECTROSCOPIC SAMPLE , 2009 .

[68]  G. Ghisellini,et al.  The luminosity–volume test for cosmological fast radio bursts , 2018, Astronomy & Astrophysics.

[69]  David Schlegel,et al.  The Milky Way Tomography with SDSS. I. Stellar Number Density Distribution , 2005, astro-ph/0510520.

[70]  K. Dolag,et al.  Cluster magnetic fields from galactic outflows , 2008, 0808.0919.

[71]  C. Gheller,et al.  Simulations of extragalactic magnetic fields and of their observables , 2017, 1711.02669.

[72]  K. Bannister,et al.  The magnetic field and turbulence of the cosmic web measured using a brilliant fast radio burst , 2016, Science.

[73]  Theo Steininger,et al.  IMAGINE: a comprehensive view of the interstellar medium, Galactic magnetic fields and cosmic rays , 2018, Journal of Cosmology and Astroparticle Physics.

[74]  A. Keimpema,et al.  A direct localization of a fast radio burst and its host , 2017, Nature.

[75]  W. Deng,et al.  COSMOLOGICAL IMPLICATIONS OF FAST RADIO BURST/GAMMA-RAY BURST ASSOCIATIONS , 2013, 1401.0059.

[76]  F. Kitaura,et al.  Simulating polarized galactic synchrotron emission at all frequencies - the Hammurabi code , 2008, 0807.2262.

[77]  H. Courtois,et al.  COSMICFLOWS-2: THE DATA , 2013, 1307.7213.

[78]  L. Magrini,et al.  IC10: the history of the nearest starburst galaxy through its Planetary Nebula and H ii region populations★ , 2009, 0905.3630.

[79]  Devin Silvia,et al.  Trident: A Universal Tool for Generating Synthetic Absorption Spectra from Astrophysical Simulations , 2016, 1612.03935.

[80]  Bing Zhang Fast Radio Burst Energetics and Detectability from High Redshifts , 2018, The Astrophysical Journal.

[81]  The CHIMEFRB Collaboration,et al.  A second source of repeating fast radio bursts , 2019 .

[82]  M. Halpern,et al.  A second source of repeating fast radio bursts , 2019, Nature.

[83]  E. Berger,et al.  Millisecond Magnetar Birth Connects FRB 121102 to Superluminous Supernovae and Long-duration Gamma-Ray Bursts , 2017, 1701.02370.

[84]  A. Basu,et al.  Statistical properties of Faraday rotation measure in external galaxies – I: intervening disc galaxies , 2018, 1803.07896.

[85]  J. Neill,et al.  PROBING THE INTERGALACTIC MEDIUM WITH FAST RADIO BURSTS , 2014, 1409.3244.

[86]  Lisa Harvey-Smith,et al.  Estimating extragalactic Faraday rotation , 2014, 1404.3701.

[87]  C. Gheller,et al.  Probing the origin of extragalactic magnetic fields with Fast Radio Bursts , 2018, Monthly Notices of the Royal Astronomical Society.

[88]  K. Ioka,et al.  The Cosmic Dispersion Measure from Gamma-Ray Burst Afterglows: Probing the Reionization History and the Burst Environment , 2003, astro-ph/0309200.

[89]  M. Mclaughlin,et al.  On the detectability of extragalactic fast radio transients , 2013, 1307.1200.

[90]  Hydrodynamical simulations of the Sunyaev-Zel'dovich effect , 1999, astro-ph/9907224.

[91]  R. Teyssier,et al.  Magnetised winds in dwarf galaxies , 2009, 0908.3862.

[92]  J. Hessels Fast Radio Bursts , 2020 .

[93]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[94]  K. Subramanian,et al.  The origin, evolution and signatures of primordial magnetic fields , 2015, Reports on progress in physics. Physical Society.

[95]  Manisha Caleb,et al.  One or several populations of fast radio burst sources? , 2018, Nature Astronomy.

[96]  G. Farrar,et al.  A NEW MODEL OF THE GALACTIC MAGNETIC FIELD , 2012, 1204.3662.

[97]  D. Breitschwerdt,et al.  Global dynamical evolution of the ISM in star forming galaxies. I. High resolution 3D simulations: Effect of the magnetic field , 2005, astro-ph/0502327.

[98]  B. M. Gaensler,et al.  Constraints on the distribution and energetics of fast radio bursts using cosmological hydrodynamic simulations , 2014, 1412.4829.

[99]  Nrl,et al.  A repeating fast radio burst , 2016, Nature.

[100]  A. Beloborodov,et al.  MAGNETAR HEATING , 2016, 1605.09077.

[101]  A. Beloborodov A Flaring Magnetar in FRB 121102? , 2017, 1702.08644.

[102]  Canada,et al.  FAST RADIO BURSTS AS PROBES OF MAGNETIC FIELDS IN THE INTERGALACTIC MEDIUM , 2016, 1602.03235.

[103]  R. N. Manchester,et al.  A NEW ELECTRON-DENSITY MODEL FOR ESTIMATION OF PULSAR AND FRB DISTANCES , 2016, 1610.09448.

[104]  P. Vreeswijk,et al.  HOST-GALAXY PROPERTIES OF 32 LOW-REDSHIFT SUPERLUMINOUS SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY , 2016, 1604.08207.

[105]  A. M. Hopkins,et al.  On the Evolution of Star-forming Galaxies , 2004, astro-ph/0407170.

[106]  S. Bamford,et al.  Galaxy And Mass Assembly (GAMA): the galaxy stellar mass function at z < 0.06 , 2011, 1111.5707.

[107]  D. R. Lorimer,et al.  A decade of fast radio bursts , 2018, Nature Astronomy.

[108]  R. Klessen,et al.  Magnetic Field Amplification in Young Galaxies , 2013, 1310.0853.

[109]  B. Metzger,et al.  Fast radio bursts as synchrotron maser emission from decelerating relativistic blast waves , 2019, Monthly Notices of the Royal Astronomical Society.

[110]  D. V. Wiebe,et al.  The CHIME Fast Radio Burst Project: System Overview , 2018, The Astrophysical Journal.

[111]  P. Garnavich,et al.  Driving the Beat: Time-resolved Spectra of the White Dwarf Pulsar AR Scorpii , 2018, The Astrophysical Journal.

[112]  R. Beck,et al.  THE MAGNETIZED GALACTIC WIND AND SYNCHROTRON HALO OF THE STARBURST DWARF GALAXY IC 10 , 2016, 1602.05903.

[113]  L. Testi,et al.  The origin of massive O-type field stars - II. Field O stars as runaways , 2005 .

[114]  J. Katz,et al.  HOW SOFT GAMMA REPEATERS MIGHT MAKE FAST RADIO BURSTS , 2015, 1512.04503.

[115]  R. Lynch,et al.  THE REPEATING FAST RADIO BURST FRB 121102: MULTI-WAVELENGTH OBSERVATIONS AND ADDITIONAL BURSTS , 2016, 1603.08880.

[116]  A. Tevzadze,et al.  Primordial magnetic field limits from cosmological data , 2010, 1009.2094.

[117]  Gabriele Giovannini,et al.  Clusters of galaxies: observational properties of the diffuse radio emission , 2012, The Astronomy and Astrophysics Review.

[118]  A. M. Taylor,et al.  EGMF Constraints from Simultaneous GeV-TeV Observations of Blazars , 2011, 1101.0932.

[119]  D. Lorimer,et al.  On the normalized FRB luminosity function , 2018, Monthly Notices of the Royal Astronomical Society.

[120]  S. E. Nuza,et al.  Measuring cosmic magnetic fields by rotation measure-galaxy cross-correlations in cosmological simulations , 2010, 1003.5085.

[121]  A. J. Levan,et al.  Long γ-ray bursts and core-collapse supernovae have different environments , 2006, Nature.

[122]  Di Li,et al.  The Five-hundred-meter Aperture Spherical radio Telescope (FAST) project , 2011, 2015 International Topical Meeting on Microwave Photonics (MWP).

[123]  O. I. Wong,et al.  WALLABY Pilot Survey: H i in the Host Galaxy of a Fast Radio Burst , 2023, The Astrophysical Journal.