Local structure approximation as a predictor of second-order phase transitions in asynchronous cellular automata
暂无分享,去创建一个
[1] Nazim Fatès,et al. Fully asynchronous behavior of double-quiescent elementary cellular automata , 2006, Theor. Comput. Sci..
[2] Mark Fannes,et al. On solvable models in classical lattice systems , 1984 .
[3] Jonathan D. Victor,et al. Local structure theory for cellular automata , 1987 .
[4] Damien Regnault. Proof of a Phase Transition in Probabilistic Cellular Automata , 2013, Developments in Language Theory.
[5] H. J. Brascamp. Equilibrium states for a one dimensional lattice gas , 1971 .
[6] J. Ricardo G. Mendoncca,et al. An extinction-survival-type phase transition in the probabilistic cellular automaton p182?q200 , 2011 .
[7] Giancarlo Mauri,et al. m-Asynchronous cellular automata: from fairness to quasi-fairness , 2013, Natural Computing.
[8] Nazim Fatès,et al. An Experimental Study of Robustness to Asynchronism for Elementary Cellular Automata , 2004, Complex Syst..
[9] Nazim Fatès,et al. A Guided Tour of Asynchronous Cellular Automata , 2013, J. Cell. Autom..
[10] Rodney A. Brooks,et al. Asynchrony induces stability in cellular automata based models , 1994 .
[11] J. Yorke,et al. Chaos: An Introduction to Dynamical Systems , 1997 .
[12] Jean Mairesse,et al. Around probabilistic cellular automata , 2014, Theor. Comput. Sci..
[13] L. Taggi. Critical Probabilities and Convergence Time of Percolation Probabilistic Cellular Automata , 2013, 1312.6990.
[14] Luís Correia,et al. Effects of asynchronism on evolutionary games. , 2011, Journal of theoretical biology.
[15] Nazim Fatès,et al. Asynchronism Induces Second-Order Phase Transitions in Elementary Cellular Automata , 2007, J. Cell. Autom..
[16] Jonathan D. Victor,et al. Local Structure Theory in More Than One Dimension , 1987, Complex Syst..
[17] T. E. Ingerson,et al. Structure in asynchronous cellular automata , 1984 .
[18] Henryk Fuks,et al. Construction of Local Structure Maps for Cellular Automata , 2013, J. Cell. Autom..