MS-Net: Mixed-Supervision Fully-Convolutional Networks for Full-Resolution Segmentation

For image segmentation, typical fully convolutional networks (FCNs) need strong supervision through a large sample of high-quality dense segmentations, entailing high costs in expert-raters’ time and effort. We propose MS-Net, a new FCN to significantly reduce supervision cost, and improve performance, by coupling strong supervision with weak supervision through low-cost input in the form of bounding boxes and landmarks. Our MS-Net enables instance-level segmentation at high spatial resolution, with feature extraction using dilated convolutions. We propose a new loss function using bootstrapped Dice overlap for precise segmentation. Results on large datasets show that MS-Net segments more accurately at reduced supervision costs, compared to the state of the art.

[1]  Bram van Ginneken,et al.  Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database , 2006, Medical Image Anal..

[2]  Bastian Leibe,et al.  Full-Resolution Residual Networks for Semantic Segmentation in Street Scenes , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Hao Chen,et al.  DCAN: Deep Contour-Aware Networks for Accurate Gland Segmentation , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Kaiming He,et al.  Mask R-CNN , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[5]  Seyed-Ahmad Ahmadi,et al.  V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[6]  Luca Maria Gambardella,et al.  Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images , 2012, NIPS.

[7]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[8]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Kaiming He,et al.  Focal Loss for Dense Object Detection , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[10]  Lisa Tang,et al.  Deep Convolutional Encoder Networks for Multiple Sclerosis Lesion Segmentation , 2015, MICCAI.

[11]  Nathalie Harder,et al.  A benchmark for comparison of cell tracking algorithms , 2014, Bioinform..