Self-organizing time map: An abstraction of temporal multivariate patterns

This paper adopts and adapts Kohonen's standard self-organizing map (SOM) for exploratory temporal structure analysis. The self-organizing time map (SOTM) implements SOM-type learning to one-dimensional arrays for individual time units, preserves the orientation with short-term memory and arranges the arrays in an ascending order of time. The two-dimensional representation of the SOTM attempts thus twofold topology preservation, where the horizontal direction preserves time topology and the vertical direction data topology. This enables discovering the occurrence and exploring the properties of temporal structural changes in data. For representing qualities and properties of SOTMs, we adapt measures and visualizations from the standard SOM paradigm, as well as introduce a measure of temporal structural changes. The functioning of the SOTM, and its visualizations and quality and property measures, are illustrated on artificial toy data. The usefulness of the SOTM in a real-world setting is shown on poverty, welfare and development indicators.

[1]  Teuvo Kohonen,et al.  Visual Explorations in Finance , 1998 .

[2]  Tomas Eklund,et al.  A Framework for State Transitions on the Self-Organizing Map: some Temporal Financial Applications , 2012, Intell. Syst. Account. Finance Manag..

[3]  Jukka Heikkonen,et al.  Time Series Predicition using Recurrent SOM with Local Linear Models , 1997 .

[4]  Barbara Hammer,et al.  Unsupervised Recursive Sequence Processing , 2003, ESANN.

[5]  Peter Sarlin,et al.  Visual tracking of the millennium development goals with a fuzzified self-organizing neural network , 2012, Int. J. Mach. Learn. Cybern..

[6]  Peter Sarlin,et al.  Visual Predictions of Currency Crises Using Self-Organizing Maps , 2010, 2010 IEEE International Conference on Data Mining Workshops.

[7]  Alfred Ultsch,et al.  A Method for Temporal Knowledge Conversion , 1999, IDA.

[8]  Alessio Micheli,et al.  Self-Organizing Maps for Time Series , 2005 .

[9]  Hannu Vanharanta,et al.  Comparing numerical data and text information from annual reports using self-organizing maps , 2001, Int. J. Account. Inf. Syst..

[10]  John G. Taylor,et al.  The temporal Kohönen map , 1993, Neural Networks.

[11]  Peter Sarlin,et al.  Mapping the State of Financial Stability , 2011, SSRN Electronic Journal.

[12]  Tomas Eklund,et al.  Financial performance analysis of European banks using a fuzzified Self-Organizing Map , 2011, Int. J. Knowl. Based Intell. Eng. Syst..

[13]  Gabriela Guimarães,et al.  Temporal knowledge discovery with self-organizing neural networks , 2000, Int. J. Comput. Syst. Signals.

[14]  Carlos Serrano-Cinca,et al.  Self-organizing neural networks for the analysis and representation of data: Some financial cases , 1993, Neural Computing & Applications.

[15]  Cynthia A. Brewer,et al.  ColorBrewer.org: An Online Tool for Selecting Colour Schemes for Maps , 2003 .

[16]  Kaisa Sere,et al.  Managing Complexity in Large Data Bases Using Self-Organizing Maps , 1996 .

[17]  Thomas Voegtlin,et al.  Recursive self-organizing maps , 2002, Neural Networks.

[18]  Jacques Bertin,et al.  Semiology of Graphics - Diagrams, Networks, Maps , 2010 .

[19]  KEIICHI HORIO,et al.  Feedback Self-Organizing Map and its Application to Spatio-Temporal Pattern Classification , 2001, Int. J. Comput. Intell. Appl..

[20]  Graham J. Williams,et al.  Visualizing temporal cluster changes using Relative Density Self-Organizing Maps , 2009, Knowledge and Information Systems.

[21]  Tomas Eklund,et al.  Fuzzy Clustering of the Self-Organizing Map: Some Applications on Financial Time Series , 2011, WSOM.

[22]  Michaël Aupetit,et al.  Visualizing distortions and recovering topology in continuous projection techniques , 2007, Neurocomputing.

[23]  T. Kohonen,et al.  Exploratory Data Analysis by the Self-Organizing Map: Structures of Welfare and Poverty in the World , 1996 .

[24]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[25]  Denny,et al.  Visualization of Cluster Changes by Comparing Self-organizing Maps , 2005, PAKDD.

[26]  Ah Chung Tsoi,et al.  A self-organizing map for adaptive processing of structured data , 2003, IEEE Trans. Neural Networks.

[27]  J.C. Principe,et al.  Non-linear time series modeling with self-organization feature maps , 1995, Proceedings of 1995 IEEE Workshop on Neural Networks for Signal Processing.

[28]  Fernando Moura-Pires,et al.  A taxonomy of Self-organizing Maps for temporal sequence processing , 2003, Intell. Data Anal..

[29]  Barbara Hammer,et al.  Merge SOM for temporal data , 2005, Neurocomputing.

[30]  M. V. Velzen,et al.  Self-organizing maps , 2007 .

[31]  Aluizio F. R. Araújo,et al.  A Taxonomy for Spatiotemporal Connectionist Networks Revisited: The Unsupervised Case , 2003, Neural Computation.

[32]  Alfred Ultsch,et al.  Classification and prediction of hail using self-organizing neural networks , 1996, Proceedings of International Conference on Neural Networks (ICNN'96).

[33]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.

[34]  Daniel A. Keim,et al.  Space‐in‐Time and Time‐in‐Space Self‐Organizing Maps for Exploring Spatiotemporal Patterns , 2010, Comput. Graph. Forum.

[35]  John J. Bertin,et al.  The semiology of graphics , 1983 .

[36]  Jari Kangas,et al.  Time-delayed self-organizing maps , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[37]  Jin Chen,et al.  A Visualization System for Space-Time and Multivariate Patterns (VIS-STAMP) , 2006, IEEE Transactions on Visualization and Computer Graphics.

[38]  Alessio Micheli,et al.  A general framework for unsupervised processing of structured data , 2004, Neurocomputing.

[39]  Guilherme De A. Barreto,et al.  Time Series Prediction with the Self-Organizing Map: A Review , 2007, Perspectives of Neural-Symbolic Integration.

[40]  A. Skupin,et al.  Self-organising maps : applications in geographic information science , 2008 .

[41]  Jukka Heikkonen,et al.  Context Learning with the Self Organizing , 1997 .

[42]  Teuvo Kohonen THE HYPERMAP ARCHITECTURE , 1991 .

[43]  J. Hollmén,et al.  Finding Profiles of Forest Nutrition by Clustering of the Self-Organizing Map , 2003 .

[44]  Jarkko Venna,et al.  Coloring that Reveals Cluster Structures in Multivariate Data , 2000 .

[45]  T. Kohonen,et al.  Visual Explorations in Finance with Self-Organizing Maps , 1998 .

[46]  Teuvo Kohonen,et al.  The 'neural' phonetic typewriter , 1988, Computer.

[47]  Gilles Pagès,et al.  Theoretical aspects of the SOM algorithm , 1998, Neurocomputing.

[48]  Bernd Fritzke,et al.  A Growing Neural Gas Network Learns Topologies , 1994, NIPS.

[49]  Juha Vesanto,et al.  SOM-based data visualization methods , 1999, Intell. Data Anal..