Algorithms for Quantum Computers

This paper surveys the field of quantum computer algorithms. It gives a taste of both the breadth and the depth of the known algorithms for quantum computers, focusing on some of the more recent results. It begins with a brief review of quantum Fourier transform based algorithms, followed by quantum searching and some of its early generalizations. It continues with a more in-depth description of two more recent developments: algorithms developed in the quantum walk paradigm, followed by tensor network evaluation algorithms (which include approximating the Tutte polynomial).

[1]  C. Macchiavello,et al.  Optimal quantum circuits for general phase estimation. , 2006, Physical review letters.

[2]  Dima Grigoriev,et al.  Testing Shift-Equivalence of Polynomials by Deterministic, Probabilistic and Quantum Machines , 1997, Theor. Comput. Sci..

[3]  Pawel Wocjan,et al.  The Jones polynomial: quantum algorithms and applications in quantum complexity theory , 2008, Quantum Inf. Comput..

[4]  B. Chakrabarti,et al.  Colloquium : Quantum annealing and analog quantum computation , 2008, 0801.2193.

[5]  Andrew M. Childs,et al.  ANY AND-OR FORMULA OF SIZE N CAN BE EVALUATED IN TIME N1/2+o(1) ON A QUANTUM COMPUTER , 2010 .

[6]  Mika Hirvensalo Quantum Computing , 2001, Natural Computing Series.

[7]  M. Szegedy,et al.  Quantum Walk Based Search Algorithms , 2008, TAMC.

[8]  Lov K. Grover,et al.  A new algorithm for fixed point quantum search , 2006, Quantum Inf. Comput..

[9]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[10]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[11]  Richard J. Lipton,et al.  Quantum Cryptanalysis of Hidden Linear Functions (Extended Abstract) , 1995, CRYPTO.

[12]  Joseph Geraci,et al.  A new connection between quantum circuits, graphs and the Ising partition function , 2008, Quantum Inf. Process..

[13]  Dorit Aharonov,et al.  The BQP-hardness of approximating the Jones polynomial , 2006, ArXiv.

[14]  R. Feynman Simulating physics with computers , 1999 .

[15]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[16]  Alain Tapp Quantum Algorithm for the Collision Problem , 2008, Encyclopedia of Algorithms.

[17]  Andris Ambainis,et al.  Any AND-OR Formula of Size N can be Evaluated in time N^{1/2 + o(1)} on a Quantum Computer , 2010, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[18]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[19]  Alfred Menezes,et al.  Handbook of Applied Cryptography , 2018 .

[20]  Lov K. Grover A framework for fast quantum mechanical algorithms , 1997, STOC '98.

[21]  A. Hora,et al.  Distance-Regular Graphs , 2007 .

[22]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[23]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[24]  M. Hirvensalo Quantum Computing (Natural Computing Series) , 2004 .

[25]  Wolfgang Dur,et al.  Completeness of classical spin models and universal quantum computation , 2008, 0812.2368.

[26]  N. Mermin Quantum Computer Science: An Introduction , 2007 .

[27]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[28]  Andrew M. Childs,et al.  Quantum algorithms for algebraic problems , 2008, 0812.0380.

[29]  Joseph Geraci,et al.  A BQP-complete problem related to the Ising model partition function via a new connection between quantum circuits and graphs , 2008, 0801.4833.

[30]  Michele Mosca,et al.  Counting by quantum eigenvalue estimation , 2001, Theor. Comput. Sci..

[31]  D. Aharonov,et al.  Polynomial Quantum algorithms for additive approximations of the Potts model and other points of the Tutte plane Preliminary Version , 2008 .

[32]  Daniel R. Simon,et al.  On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[33]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[34]  D. Welsh Complexity: Knots, Colourings and Counting: Link polynomials and the Tait conjectures , 1993 .

[35]  Edward Farhi,et al.  A Quantum Algorithm for the Hamiltonian NAND Tree , 2008, Theory Comput..

[36]  Ben Reichardt,et al.  Span-program-based quantum algorithm for evaluating formulas , 2007, Theory Comput..

[37]  M. Freedman,et al.  Topological Quantum Computation , 2001, quant-ph/0101025.

[38]  Stephen P. Jordan,et al.  Quantum computation beyond the circuit model , 2008, 0809.2307.

[39]  Dorit Aharonov,et al.  A Polynomial Quantum Algorithm for Approximating the Jones Polynomial , 2008, Algorithmica.

[40]  A. Chatterjee,et al.  Introduction to Quantum Computation , 2003 .

[41]  Andris Ambainis,et al.  QUANTUM WALKS AND THEIR ALGORITHMIC APPLICATIONS , 2003, quant-ph/0403120.

[42]  Andris Ambainis,et al.  Quantum walks on graphs , 2000, STOC '01.

[43]  W. Dur,et al.  Classical spin systems and the quantum stabilizer formalism: General mappings and applications , 2008, 0812.2127.

[44]  Nayak Ashwin,et al.  Quantum Walk on the Line , 2000 .

[45]  Jianer Chen,et al.  Theory and Applications of Models of Computation , 2014, Lecture Notes in Computer Science.

[46]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[47]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[48]  P. Høyer,et al.  Higher order decompositions of ordered operator exponentials , 2008, 0812.0562.

[49]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[50]  Andris Ambainis,et al.  Quantum walk algorithm for element distinctness , 2003, 45th Annual IEEE Symposium on Foundations of Computer Science.

[51]  Michele Mosca Abelian Hidden Subgroup Problem , 2008, Encyclopedia of Algorithms.

[52]  Andris Ambainis,et al.  One-dimensional quantum walks , 2001, STOC '01.

[53]  Daniel A. Lidar,et al.  On the Exact Evaluation of Certain Instances of the Potts Partition Function by Quantum Computers , 2008 .

[54]  Scott Aaronson,et al.  Quantum lower bounds for the collision and the element distinctness problems , 2004, JACM.

[55]  Greta Pangborn,et al.  A little statistical mechanics for the graph theorist , 2008, Discret. Math..

[56]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[57]  Zeph Landau,et al.  Quantum Computation and the Evaluation of Tensor Networks , 2008, SIAM J. Comput..

[58]  Gilles Brassard,et al.  Quantum cryptanalysis of hash and claw-free functions , 1997, SIGA.

[59]  Avi Wigderson,et al.  On span programs , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[60]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[61]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[62]  Gilles Brassard,et al.  Tight bounds on quantum searching , 1996, quant-ph/9605034.

[63]  M. Freedman,et al.  Simulation of Topological Field Theories¶by Quantum Computers , 2000, quant-ph/0001071.

[64]  Gilles Brassard,et al.  An exact quantum polynomial-time algorithm for Simon's problem , 1997, Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems.