Proceedings of Symposia in Pure Mathematics Topological Cyclic Homology of Schemes

In recent years, the topological cyclic homology functor of [4] has been used to study and to calculate higher algebraic K-theory. It is known that for finite algebras over the ring of Witt vectors of a perfect field of characteristic p, the p-adic K-theory and topological cyclic homology agree in non-negative degrees, [20]. This has been used to calculate the p-adic K-theory of truncated polynomial algebras over perfect fields of characteristic p > 0, [21], and of rings of integers in unramified extensions of the field Qp of p-adic numbers, [6]. In this paper, we extend the definition of topological cyclic homology to schemes. The topological Hochschild spectrum TH(A), recalled in paragraph 2 below, defines, as the ring A varies, a presheaf of spectra on the category of affine schemes. We show in paragraph 3 that the corresponding presheaves of homotopy groups are quasi-coherent sheaves for the étale topology. It follows that the map TH(A) ∼ −→ H((SpecA)ét,TH),

[1]  L. Hesselholt On the p-typical curves in Quillen's K-theory , 2006 .

[2]  L. Hesselholt Stable topological cyclic homology is topological Hochschild homology , 2005 .

[3]  R. M. Vogt,et al.  Topological Hochschild Homology , 2000 .

[4]  J. Rognes Topological cyclic homology of the integers at two , 1999 .

[5]  J. M. Boardman Conditionally Convergent Spectral Sequences , 1999 .

[6]  I. Madsen,et al.  Cyclic polytopes and the $K$-theory of truncated polynomial algebras , 1997 .

[7]  R. McCarthy Relative algebraic K-theory and topological cyclic homology , 1997 .

[8]  Thomas H. Geisser $p$-adic $K$-theory of Hecke characters of imaginary quadratic fields and an analogue of Beilinson's conjectures , 1997 .

[9]  Ib Madsen,et al.  On the K-theory of finite algebras over witt vectors of perfect fields , 1997 .

[10]  S. A. Mitchell Hypercohomology Spectra and Thomason’s Descent Theorem , 1997 .

[11]  I. Madsen,et al.  Algebraic K-Theory of Local Number Fields: The Unramified Case , 1996 .

[12]  Bjørn Ian Dundas,et al.  Topological Hochschild homology of ring functors and exact categories , 1996 .

[13]  Ib Madsen,et al.  The cyclotomic trace and algebraic K-theory of spaces , 1993 .

[14]  Jon P. May Simplicial objects in algebraic topology , 1993 .

[15]  O. Gabber K-theory of Henselian Local Rings and Henselian Pairs , 1992 .

[16]  C. Weibel,et al.  Étale descent for hochschild and cyclic homology , 1991 .

[17]  T. Goodwillie Calculus II: Analytic functors , 1991 .

[18]  R. Thomason,et al.  Higher Algebraic K-Theory of Schemes and of Derived Categories , 1990 .

[19]  M. Gros,et al.  La conjecture de Gersten pour les faisceaux de Hodge-Witt logarithmique , 1988 .

[20]  M. Gros,et al.  Application d’Abel-Jacobi p-adique et cycles algébriques , 1988 .

[21]  Uwe Jannsen Continuous étale cohomology , 1988 .

[22]  J. Milne Motivic cohomology and values of zeta functions , 1988 .

[23]  D. M. Kan,et al.  Homotopy Limits, Completions and Localizations , 1987 .

[24]  I. Panin ON A THEOREM OF HUREWICZ AND $ K$-THEORY OF COMPLETE DISCRETE VALUATION RINGS , 1987 .

[25]  A. Suslin Torsion in K2 of fields , 1987 .

[26]  Kazuya Kato,et al.  The dimension of fields and algebraic K-theory , 1986 .

[27]  J. Milne VALUES OF ZETA FUNCTIONS OF VARIETIES OVER FINITE FIELDS , 1986 .

[28]  R. Thomason Algebraic $K$-theory and etale cohomology , 1985 .

[29]  L. Illusie Complexe de de Rham-Witt et cohomologie cristalline , 1979 .

[30]  F. Waldhausen ALGEBRAIC K-THEORY OF SPACES I , 1978 .

[31]  D. Quillen,et al.  Higher algebraic K-theory: I , 1973 .

[32]  B. J. Birch,et al.  LECTURES ON FORMS IN MANY VARIABLES , 1970 .