Micro-tubular solid oxide fuel cells and stacks

Abstract The properties and performance of micro-tubular solid oxide fuel cells are compared and the differentiating factors discussed. The best recorded power density for a single cell in the literature to date is 1.1 W cm −2 , with anode microstructure and current collection technique emerging as two key factors influencing electrical performance. The use of hydrocarbon fuels instead of pure hydrogen and methods for reducing the resultant carbon deposition are briefly discussed. Performance on thermal and reduction–oxidation (RedOx) cycling is also a critical issue for cell durability. Combining these individual cells into stacks is necessary to obtain useful power outputs. As such, issues of fluid and heat transfer within such stacks become critical, and computational modelling can therefore be a useful design tool. Experimentally tested stacks and stack models are discussed and the findings summarised. New results for a simple stack manufactured at the University of Birmingham are also given.

[1]  Toshiaki Yamaguchi,et al.  Design and Fabrication of Lightweight, Submillimeter Tubular Solid Oxide Fuel Cells , 2007 .

[2]  Scott A. Barnett,et al.  Use of a catalyst layer for propane partial oxidation in solid oxide fuel cells , 2005 .

[3]  Toshio Suzuki,et al.  Impact of Anode Microstructure on Solid Oxide Fuel Cells , 2009, Science.

[4]  W. J. Dollard Solid oxide fuel cell developments at Westinghouse , 1992 .

[5]  Yoshinobu Fujishiro,et al.  Simulation Study for the Optimization of Microtubular Solid Oxide Fuel Cell Bundles , 2010 .

[6]  Y. Yamazaki,et al.  Structural Modification of Segmented-in-series Tubular SOFCs Using Performance Simulation and the Effect of (Sm, Ce)O2 Cathode Interlayer on the Generation Characteristics under Pressurization , 2009 .

[7]  Yanhai Du,et al.  Thermal Stability of Portable Microtubular SOFCs and Stacks , 2008 .

[8]  M. Mori,et al.  Fabrication and characterization of micro-tubular cathode-supported SOFC for intermediate temperature operation , 2007 .

[9]  Stefano Cordiner,et al.  Review of the micro-tubular solid oxide fuel cell: Part I. Stack design issues and research activities , 2009 .

[10]  Toshiaki Yamaguchi,et al.  Recent Development of Microceramic Reactors for Advanced Ceramic Reactor System , 2008 .

[11]  Nigel Sammes,et al.  Performance Degradation of Microtubular SOFCs Operating in the Intermediate-Temperature Range , 2009 .

[12]  Kang Li,et al.  Characterization of NiO-yttria stabilised zirconia (YSZ) hollow fibres for use as SOFC anodes , 2009 .

[13]  G. Rietveld,et al.  Redox Tolerant SOFC Anodes with High Electrochemical Performance , 2009 .

[14]  Mikko Pihlatie,et al.  Testing and improving the redox stability of Ni-based solid oxide fuel cells , 2009 .

[15]  Chunshan Song,et al.  Steam reforming of liquid hydrocarbon fuels for micro-fuel cells. Pre-reforming of model jet fuels over supported metal catalysts , 2008 .

[16]  S. Jiang,et al.  A review of anode materials development in solid oxide fuel cells , 2004 .

[17]  K. Kendall,et al.  Cycling of three solid oxide fuel cell types , 2007 .

[18]  Dehua Dong,et al.  YSZ-based SOFC with modified electrode/electrolyte interfaces for operating at temperature lower than 650 °C , 2008 .

[19]  Ian S. Metcalfe,et al.  Microstructure and performance of novel Ni anode for hollow fibre solid oxide fuel cells , 2009 .

[20]  Doris Sebold,et al.  Optimisation of processing and microstructural parameters of LSM cathodes to improve the electrochemical performance of anode-supported SOFCs , 2005 .

[21]  Douglas G. Ivey,et al.  A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects , 2010 .

[22]  M. Wetzko,et al.  Solid oxide fuel cell stacks using extruded honeycomb type elements , 1999 .

[23]  K. Kendall,et al.  Mixed-reactant, micro-tubular solid oxide fuel cells: An experimental study , 2009 .

[24]  S. C. Singhal,et al.  Electrochemical Vapor Deposition of Yttria‐Stabilized Zirconia Films , 1990 .

[25]  Heesung Yoon,et al.  High-performance bilayered electrolyte intermediate temperature solid oxide fuel cells , 2009 .

[26]  R. Gorte,et al.  Direct hydrocarbon solid oxide fuel cells. , 2004, Chemical reviews.

[27]  D. Cui,et al.  Comparison of different current collecting modes of anode supported micro-tubular SOFC through mathematical modeling , 2007 .

[28]  K. Kendall,et al.  High temperature solid oxide fuel cells : fundamentals, design and applicatons , 2003 .

[29]  Rak-Hyun Song,et al.  Development of a 700 W anode-supported micro-tubular SOFC stack for APU applications , 2008 .

[30]  A. Su,et al.  Porous Ag–Ce0.8Sm0.2O1.9 cermets as anode materials for intermediate temperature solid oxide fuel cells using CO fuel , 2008 .

[31]  Xiaobo Du,et al.  Effect of composite pore-former on the fabrication and performance of anode-supported membranes for SOFCs , 2008 .

[32]  Toshiaki Yamaguchi,et al.  Anode-supported micro tubular SOFCs for advanced ceramic reactor system , 2007 .

[33]  A. Isenberg Energy conversion via solid oxide electrolyte electrochemical cells at high temperatures , 1981 .

[34]  R. Kee,et al.  The influence of current collection on the performance of tubular anode-supported SOFC cells , 2007 .

[35]  Andreas Mai,et al.  Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells. Part I. Variation of composition , 2005 .

[36]  N. Sammes,et al.  Fabrication and properties of anode-supported tubular solid oxide fuel cells , 2004 .

[37]  Toshiaki Yamaguchi,et al.  Current collecting efficiency of micro tubular SOFCs , 2007 .

[38]  G. Meng,et al.  Ceria coated Ni as anodes for direct utilization of methane in low-temperature solid oxide fuel cells , 2006 .

[39]  Kevin Kendall,et al.  Progress in Microtubular Solid Oxide Fuel Cells , 2010 .

[40]  S. Assabumrungrat,et al.  Catalytic steam reforming of ethanol over high surface area CeO2: The role of CeO2 as an internal pre-reforming catalyst , 2006 .

[41]  Chunwen Sun,et al.  Cathode materials for solid oxide fuel cells: a review , 2010 .

[42]  Allan J. Jacobson,et al.  Materials for Solid Oxide Fuel Cells , 2010 .

[43]  Kevin Kendall,et al.  Effects of dilution on methane entering an SOFC anode , 2002 .

[44]  N. Sammes,et al.  Assembling single cells to create a stack: The case of a 100 W microtubular anode-supported solid oxide fuel cell stack , 2006 .

[45]  K. Kendall,et al.  A 1000-cell SOFC reactor for domestic cogeneration , 1998 .

[46]  Toshio Suzuki,et al.  Fabrication and evaluation of a novel cathode-supported honeycomb SOFC stack , 2009 .

[47]  D. Cui,et al.  Thermal stress modeling of anode supported micro-tubular solid oxide fuel cell , 2009 .

[48]  J. Vohs,et al.  Impedance Spectroscopy for the Characterization of Cu-Ceria-YSZ Anodes for SOFCs , 2003 .

[49]  Wei Liu,et al.  Fabrication of cathode supported solid oxide fuel cell by multi-layer tape casting and co-firing method , 2009 .

[50]  K. Kendall,et al.  The effect of temperature gradients on thermal cycling and isothermal ageing of micro-tubular solid oxide fuel cells , 2009 .

[51]  C. Xia,et al.  Samaria-doped Ceria Modified Ni/YSZ Anode for Direct Methane Fuel in Tubular Solid Oxide Fuel Cells by Impregnation Method , 2009 .

[52]  A. S. Nesaraj,et al.  Recent developments in solid oxide fuel cell technology – a review , 2010 .

[53]  Scott A. Barnett,et al.  Operation of anode-supported solid oxide fuel cells on methane and natural gas , 2003 .

[54]  W. Chiu,et al.  Modeling of gas transport through a tubular solid oxide fuel cell and the porous anode layer , 2008 .

[55]  Yoshinobu Fujishiro,et al.  New Fabrication Technique for Series‐Connected Stack With Micro Tubular SOFCs , 2009 .

[56]  Tatsumi Ishihara,et al.  Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor , 1994 .

[57]  S. Kakaç,et al.  A review of numerical modeling of solid oxide fuel cells , 2007 .

[58]  Toshio Suzuki,et al.  Evaluation of Micro LSM-Supported GDC/ScSZ Bilayer Electrolyte with LSM–GDC Activation Layer for Intermediate Temperature-SOFCs , 2008 .

[59]  Mustafa Fazil Serincan,et al.  Effects of operating conditions on the performance of a micro-tubular solid oxide fuel cell (SOFC) , 2009 .

[60]  D. Dong,et al.  High-performance cathode-supported SOFCs prepared by a single-step co-firing process , 2008 .

[61]  S. Barnett,et al.  Direct operation of solid oxide fuel cells with methane fuel , 2005 .

[62]  K. Kendall,et al.  SOFC system with integrated catalytic fuel processing , 2000 .

[63]  James Larminie,et al.  Fuel Cell Systems Explained , 2000 .

[64]  J. Vohs,et al.  Role of Hydrocarbon Deposits in the Enhanced Performance of Direct-Oxidation SOFCs , 2003 .

[65]  Toshio Suzuki,et al.  New Stack Design of Micro‐tubular SOFCs for Portable Power Sources , 2008 .

[66]  J. Vohs,et al.  An Examination of Lanthanide Additives on the Performance of Cu-YSZ Cermet Anodes , 2002 .

[67]  Zi-Feng Ma,et al.  Preparation of electrolyte membranes for micro tubular solid oxide fuel cells , 2008 .

[68]  J. Goodenough,et al.  Fuel cells with doped lanthanum gallate electrolyte , 1996 .

[69]  Scott A. Barnett,et al.  Improving the stability of direct-methane solid oxide fuel cells using anode barrier layers , 2006 .

[70]  Kang Li,et al.  Novel co-extruded electrolyte–anode hollow fibres for solid oxide fuel cells , 2009 .

[71]  Gd0.6Sr0.4Fe0.8Co0.2O3 − δ : A Novel Type of SOFC Cathode , 2007 .

[72]  C. Jin,et al.  Electrochemical properties analysis of tubular NiO–YSZ anode-supported SOFCs fabricated by the phase-inversion method , 2009 .

[73]  N. Sammes,et al.  Design and fabrication of a 100 W anode supported micro-tubular SOFC stack , 2005 .

[74]  Luzern First European solid oxide fuel cell forum, 3-7 October 1994, Lucerne, Switzerland , 1994 .

[75]  Toshio Suzuki,et al.  Performance of the Micro-SOFC Module Using Submillimeter Tubular Cells , 2009 .

[76]  Nigel Sammes,et al.  Mechanical properties of micro-tubular solid oxide fuel cell anodes , 2009 .

[77]  Kevin Kendall,et al.  Sensitivity of nickel cermet anodes to reduction conditions , 2005 .

[78]  H. Yahiro,et al.  Improvement of Ni/SDC anode by alkaline earth metal oxide addition for direct methane–solid oxide fuel cells , 2009 .

[79]  Meilin Liu,et al.  Pre-reforming of propane for low-temperature SOFCs , 2004 .

[80]  Y. Bultel,et al.  Modeling of a SOFC Fueled by Methane:Anode Barrier to Allow Gradual Internal Reforming Without Coking , 2008 .