Univariate and multivariate time series classification with parametric integral dynamic time warping

[1]  Mu-Yen Chen,et al.  Online fuzzy time series analysis based on entropy discretization and a Fast Fourier Transform , 2014, Appl. Soft Comput..

[2]  Han Liu,et al.  Rule-based systems: a granular computing perspective , 2016, Granular Computing.

[3]  Ying Wah Teh,et al.  Time-series clustering - A decade review , 2015, Inf. Syst..

[4]  Tomasz Górecki,et al.  First and Second Derivatives in Time Series Classification Using DTW , 2014, Commun. Stat. Simul. Comput..

[5]  Jun Wang,et al.  On the Non-Trivial Generalization of Dynamic Time Warping to the Multi-Dimensional Case , 2015, SDM.

[6]  Jian Pei,et al.  A brief survey on sequence classification , 2010, SKDD.

[7]  George E. P. Box,et al.  Time Series Analysis: Box/Time Series Analysis , 2008 .

[8]  Hui Ding,et al.  Querying and mining of time series data: experimental comparison of representations and distance measures , 2008, Proc. VLDB Endow..

[9]  Mu-Yen Chen,et al.  A high-order fuzzy time series forecasting model for internet stock trading , 2014, Future Gener. Comput. Syst..

[10]  G. Pfurtscheller,et al.  Brain–Computer Communication: Motivation, Aim, and Impact of Exploring a Virtual Apartment , 2007, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[11]  Maciej Łuczak,et al.  Hierarchical clustering of time series data with parametric derivative dynamic time warping , 2016 .

[12]  Daniel Lemire,et al.  Faster retrieval with a two-pass dynamic-time-warping lower bound , 2008, Pattern Recognit..

[13]  Eamonn J. Keogh,et al.  On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration , 2002, Data Mining and Knowledge Discovery.

[14]  T. Warren Liao,et al.  Clustering of time series data - a survey , 2005, Pattern Recognit..

[15]  Mu-Yen Chen,et al.  A hybrid fuzzy time series model based on granular computing for stock price forecasting , 2015, Inf. Sci..

[16]  Geoffrey I. Webb,et al.  Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm , 2015, Knowledge and Information Systems.

[17]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[18]  Tomasz Górecki,et al.  Non-isometric transforms in time series classification using DTW , 2014, Knowl. Based Syst..

[19]  Donald J. Berndt,et al.  Using Dynamic Time Warping to Find Patterns in Time Series , 1994, KDD Workshop.

[20]  Tomasz Górecki,et al.  Multivariate time series classification with parametric derivative dynamic time warping , 2015, Expert Syst. Appl..

[21]  Eamonn Keogh Exact Indexing of Dynamic Time Warping , 2002, VLDB.

[22]  Witold Pedrycz,et al.  The development of granular rule-based systems: a study in structural model compression , 2017, GRC 2017.

[23]  Georg Peters,et al.  DCC: a framework for dynamic granular clustering , 2016 .

[24]  Xuesong Zhou,et al.  Method for investigating intradriver heterogeneity using vehicle trajectory data: A Dynamic Time Warping approach , 2015 .

[25]  Yiyu Yao A triarchic theory of granular computing , 2016 .

[26]  Tomasz Górecki,et al.  Using derivatives in time series classification , 2012, Data Mining and Knowledge Discovery.

[27]  Andrzej Skowron,et al.  Interactive granular computing , 2016 .