Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector

Introduction Neutrino observations are a unique probe of the universe’s highest-energy phenomena: Neutrinos are able to escape from dense astrophysical environments that photons cannot and are unambiguous tracers of cosmic ray acceleration. As protons and nuclei are accelerated, they interact with gas and background light near the source to produce subatomic particles such as charged pions and kaons, which then decay, emitting neutrinos. We report on results of an all-sky search for these neutrinos at energies above 30 TeV in the cubic kilometer antarctic IceCube observatory between May 2010 and May 2012. A 250 TeV neutrino interaction in IceCube. At the neutrino interaction point (bottom), a large particle shower is visible, with a muon produced in the interaction leaving up and to the left. The direction of the muon indicates the direction of the original neutrino. Methods We have isolated a sample of neutrinos by rejecting background muons from cosmic ray showers in the atmosphere, selecting only those neutrino candidates that are first observed in the detector interior rather than on the detector boundary. This search is primarily sensitive to neutrinos from all directions above 60 TeV, at which the lower-energy background atmospheric neutrinos become rare, with some sensitivity down to energies of 30 TeV. Penetrating muon backgrounds were evaluated using an in-data control sample, with atmospheric neutrino predictions based on theoretical modeling and extrapolation from previous lower-energy measurements. Results We observed 28 neutrino candidate events (two previously reported), substantially more than the 10.6 −3.6 +5.0 expected from atmospheric backgrounds, and ranging in energy from 30 to 1200 TeV. With the current level of statistics, we did not observe significant clustering of these events in time or space, preventing the identification of their sources at this time. Discussion The data contain a mixture of neutrino flavors compatible with flavor equipartition, originate primarily from the Southern Hemisphere where high-energy neutrinos are not absorbed by Earth, and have a hard energy spectrum compatible with that expected from cosmic ray accelerators. Within our present knowledge, the directions, energies, and topologies of these events are not compatible with expectations for terrestrial processes, deviating at the 4σ level from standard assumptions for the atmospheric background. These properties, in particular the north-south asymmetry, generically disfavor any purely atmospheric explanation for the data. Although not compatible with an atmospheric explanation, the data do match expectations for an origin in unidentified high-energy galactic or extragalactic neutrino accelerators. Extraterrestrial Neutrinos Neutrinos are thought to be produced in astrophysical sources outside our solar system but, up until recently, they had only been observed from one supernova in 1987. Aartsen et al. (10.1126/science.1242856; see the cover) report data obtained between 2010 and 2012 with the IceCube neutrino detector that reveal the presence of a high-energy neutrino flux containing the most energetic neutrinos ever observed, including 28 events at energies between 30 and 1200 TeV. Although the origin of this flux is unknown, the findings are consistent with expectations for a neutrino population with origins outside the solar system. The IceCube observatory at the South Pole detected neutrinos from outside our solar system. We report on results of an all-sky search for high-energy neutrino events interacting within the IceCube neutrino detector conducted between May 2010 and May 2012. The search follows up on the previous detection of two PeV neutrino events, with improved sensitivity and extended energy coverage down to about 30 TeV. Twenty-six additional events were observed, substantially more than expected from atmospheric backgrounds. Combined, both searches reject a purely atmospheric origin for the 28 events at the 4σ level. These 28 events, which include the highest energy neutrinos ever observed, have flavors, directions, and energies inconsistent with those expected from the atmospheric muon and neutrino backgrounds. These properties are, however, consistent with generic predictions for an additional component of extraterrestrial origin.

J. P. Rodrigues | P. O. Hulth | S. M. Saba | J. G. Gonzalez | S. Ter-Antonyan | J. Kelley | J. Pepper | G. Binder | N. Whitehorn | A. Olivas | M. Aartsen | M. Ackermann | J. Adams | J. Aguilar | M. Ahlers | D. Altmann | J. Auffenberg | X. Bai | S. Barwick | V. Baum | R. Bay | J. Beatty | S. BenZvi | D. Berley | E. Bernardini | D. Besson | D. Bindig | E. Blaufuss | C. Bohm | S. Böser | O. Botner | H. Bretz | D. Chirkin | A. Christov | K. Clark | S. Coenders | D. Cowen | M. Day | P. Desiati | T. DeYoung | J. C. Díaz-Vélez | M. Dunkman | B. Eberhardt | B. Eichmann | P. Evenson | A. Fazely | K. Filimonov | C. Finley | S. Flis | A. Franckowiak | T. Gaisser | J. Gallagher | L. Gerhardt | T. Glüsenkamp | A. Goldschmidt | D. Grant | A. Hallgren | F. Halzen | K. Hanson | D. Heereman | K. Helbing | R. Hellauer | S. Hickford | G. Hill | K. Hoffman | R. Hoffmann | K. Hoshina | K. Hultqvist | A. Ishihara | E. Jacobi | G. Japaridze | K. Jero | A. Kappes | T. Karg | A. Karle | J. Kiryluk | S. Klein | H. Kolanoski | L. Köpke | C. Kopper | S. Kopper | D. Koskinen | M. Kowalski | K. Krings | N. Kurahashi | T. Kuwabara | M. Labare | M. Larson | M. Lesiak-Bzdak | M. Leuermann | J. Lünemann | J. Madsen | G. Maggi | R. Maruyama | K. Mase | K. Meagher | T. Meures | S. Miarecki | T. Montaruli | R. Morse | R. Nahnhauer | U. Naumann | H. Niederhausen | S. Nowicki | D. Nygren | A. O'Murchadha | D. Pieloth | E. Pinat | P. Price | G. Przybylski | L. Rädel | K. Rawlins | R. Reimann | E. Resconi | W. Rhode | M. Richman | C. Rott | T. Ruhe | D. Ryckbosch | M. Santander | S. Sarkar | T. Schmidt | S. Schoenen | S. Schöneberg | D. Seckel | S. Seunarine | D. Soldin | G. Spiczak | C. Spiering | M. Stamatikos | T. Stanev | Alexander Stasik | T. Stezelberger | R. Stokstad | A. Stößl | G. Sullivan | I. Taboada | S. Tilav | P. Toale | S. Toscano | E. Unger | M. Usner | M. Vraeghe | C. Walck | M. Wallraff | C. Weaver | C. Wendt | S. Westerhoff | K. Wiebe | C. Wiebusch | D. Williams | T. R. Wood | K. Woschnagg | D. Xu | X. Xu | J. Yáñez | G. Yodh | M. Smith | A. Homeier | J. Casey | H. Sander | M. Schmitz | J. Jacobsen | D. Bertrand | M. Danninger | P. Hallen | R. Ellsworth | J. Goodman | J. Davis | H. Matis | J. Brunner | G. Tesic | P. Zarzhitsky | H. Landsman | O. Schulz | T. Feusels | S. Zierke | M. Voge | R. Abbasi | Y. Abdou | M. Baker | S. Bechet | K. Becker | M. Benabderrahmane | P. Berghaus | M. Bissok | J. Blumenthal | D. Boersma | D. Bose | A. Brown | M. Carson | B. Christy | F. Clevermann | S. Cohen | J. Daughhetee | C. De Clercq | J. Eisch | S. Euler | O. Fadiran | A. Fedynitch | T. Fischer-Wasels | L. Gladstone | A. Groß | C. Ha | D. Heinen | W. Huelsnitz | S. Hussain | J. Köhne | G. Kohnen | M. Krasberg | G. Kroll | M. Merck | E. Middell | N. Milke | J. Miller | S. Odrowski | L. Paul | C. Pérez de los Heros | J. Posselt | P. Redl | M. Ribordy | B. Ruzybayev | K. Schatto | A. Schukraft | Y. Sestayo | E. Strahler | H. Taavola | A. Tamburro | A. Tepe | N. van Eijndhoven | A. Van Overloop | J. van Santen | M. Vehring | T. Waldenmaier | H. Wissing | M. Wolf | S. Yoshida | R. Bruijn | R. Shanidze | R. Ström | J. Feintzeig | D. Góra | M. Zoll | J. Becker Tjus | A. Bernhard | S. Bohaichuk | L. Brayeur | M. Casier | A. C. Cruz Silva | S. De Ridder | K. de Vries | M. de With | R. Eagan | K. Frantzen | T. Fuchs | G. Golup | D. Grandmont | A. H. Haj Ismail | K. Jagielski | O. Jlelati | B. Kaminsky | J. Kläs | J. Kunnen | J. Leute | F. McNally | L. Mohrmann | A. Obertacke | C. Pfendner | M. Rameez | B. Riedel | T. Salameh | F. Scheriau | A. Schönwald | L. Schulte | C. Sheremata | M. Wellons | J. Ziemann | A. Gross | J. Rodrigues | J. Goodman | M. De With | D. Xu | J. Davis | M. Smith | J. Davis | M. Smith | J. G. Gonzalez | J. Davis | J. Miller | A. Haj Ismail | J. Goodman | S. Cohen | M. Smith | E. Bernardini | K. Clark | K. Clark | A. Kappes | A. H. Cruz Silva | X. Xu | M. Wolf

[1]  P. O. Hulth,et al.  Observation of the cosmic-ray shadow of the Moon with IceCube , 2013, 1305.6811.

[2]  P. O. Hulth,et al.  First observation of PeV-energy neutrinos with IceCube. , 2013, Physical review letters.

[3]  T. Gaisser Atmospheric leptons. the search for a prompt component , 2013, 1303.1431.

[4]  P. Giommi,et al.  Detection of the Characteristic Pion-Decay Signature in Supernova Remnants , 2013, Science.

[5]  F. T. Collaboration,et al.  A view of prompt atmospheric neutrinos with IceCube , 2013, 1302.0127.

[6]  J. P. Rodrigues,et al.  Measurement of South Pole ice transparency with the IceCube LED calibration system , 2013, 1301.5361.

[7]  P. O. Hulth,et al.  Measurement of the atmospheric νe flux in IceCube. , 2012, Physical review letters.

[8]  C. Wiebusch,et al.  Calculation of the Cherenkov light yield from electromagnetic cascades in ice with Geant4 , 2012, 1210.5140.

[9]  J. Tjus,et al.  Influence of hadronic interaction models and the cosmic ray spectrum on the high energy atmospheric muon and neutrino flux , 2012, 1206.6710.

[10]  Thomas K. Gaisser,et al.  Spectrum of cosmic-ray nucleons, kaon production, and the atmospheric muon charge ratio , 2011, 1111.6675.

[11]  P. O. Hulth,et al.  NEUTRINO ANALYSIS OF THE 2010 SEPTEMBER CRAB NEBULA FLARE AND TIME-INTEGRATED CONSTRAINTS ON NEUTRINO EMISSION FROM THE CRAB USING ICECUBE , 2011, 1106.3484.

[12]  P. O. Hulth,et al.  Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 40-string detector , 2011, 1104.5187.

[13]  J. P. Rodrigues,et al.  Constraints on the Extremely-high Energy Cosmic Neutrino Flux with the IceCube 2008-2009 Data , 2011, 1103.4250.

[14]  J. P. Rodrigues,et al.  Calibration and characterization of the IceCube photomultiplier tube , 2010, 1002.2442.

[15]  M. Day,et al.  Nuclear Instruments and Methods in Physics Research A , 2010 .

[16]  J. P. Rodrigues,et al.  Extending the search for neutrino point sources with IceCube above the horizon. , 2009, Physical review letters.

[17]  S. Choubey,et al.  Flavor composition of ultrahigh energy neutrinos at source and at neutrino telescopes , 2009, 0909.1219.

[18]  T. Gaisser,et al.  Vetoing atmospheric neutrinos in a high energy neutrino telescope , 2008, 0812.4308.

[19]  M. Reno,et al.  Prompt neutrino fluxes from atmospheric charm , 2008, 0806.0418.

[20]  D. Berley,et al.  A Measurement of the Spatial Distribution of Diffuse TeV Gamma-Ray Emission from the Galactic Plane with Milagro , 2008, 0805.0417.

[21]  J. Dumm,et al.  Methods for point source analysis in high energy neutrino telescopes , 2008, 0801.1604.

[22]  S. Pakvasa,et al.  Flavor ratios of astrophysical neutrinos: implications for precision measurements , 2007, 0711.4517.

[23]  A. Cooper-Sarkar,et al.  Predictions for high energy neutrino cross-sections from the ZEUS global PDF fits , 2007, 0710.5303.

[24]  T. Kajita,et al.  Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data , 2006, astro-ph/0611418.

[25]  P. O. Hulth,et al.  First year performance of the IceCube neutrino telescope , 2006 .

[26]  K. Ioka,et al.  TeV-PeV Neutrinos from Giant Flares of Magnetars and the Case of SGR 1806–20 , 2005, astro-ph/0503279.

[27]  Bundschuh,et al.  Department of Physics , 2005 .

[28]  J. Knapp,et al.  CORSIKA: A Monte Carlo code to simulate extensive air showers , 1998 .

[29]  J. Bahcall,et al.  HIGH ENERGY NEUTRINOS FROM COSMOLOGICAL GAMMA-RAY BURST FIREBALLS , 1997, astro-ph/9701231.

[30]  V. Naumov,et al.  Prompt leptons in cosmic rays , 1989 .