Stability estimates for an inverse scattering problem at high frequencies

We consider an inverse scattering problem and its near-field approximation at high frequencies. We first prove, for both problems, Lipschitz stability results for determining the low-frequency component of the potential. Then we show that, in the case of a radial potential supported sufficiently near the boundary, infinite resolution can be achieved from measurements of the near-field operator in the monotone case.

[1]  Stefan Kindermann,et al.  SUBSPACES OF STABILITY IN THE CAUCHY PROBLEM FOR THE HELMHOLTZ EQUATION , 2011 .

[2]  George Papanicolaou,et al.  Resolution and denoising in near-field imaging , 2006 .

[3]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[4]  Maxim J. Goldberg,et al.  An improved operator expansion algorithm for direct and inverse scattering computations , 1999 .

[5]  R. Novikov,et al.  Multidimensional inverse spectral problem for the equation —Δψ + (v(x) — Eu(x))ψ = 0 , 1988 .

[6]  D. Yafaev High-energy and smoothness asymptotic expansion of the scattering amplitude , 2003 .

[7]  Charles L. Epstein,et al.  The Bad Truth about Laplace's Transform , 2008, SIAM Rev..

[8]  Michael E. Taylor,et al.  Partial Differential Equations II , 1996 .

[9]  D. Slepian Some comments on Fourier analysis, uncertainty and modeling , 1983 .

[10]  E. H. Linfoot Principles of Optics , 1961 .

[11]  R. Weder Global uniqueness at fixed energy in multidimensional inverse scattering theory , 1991 .

[12]  Alexei Rybkin,et al.  A new interpolation formula for the Titchmarsh-Weyl $m$-function , 2009 .

[13]  Formulae and equations for finding scattering data from the Dirichlet-to-Neumann map with nonzero background potential , 2004, cond-mat/0409751.

[14]  F. Olver Asymptotics and Special Functions , 1974 .

[15]  H. Ammari,et al.  Reconstruction of Small Inhomogeneities from Boundary Measurements , 2005 .

[16]  Finding potential from the fixed-energy scattering data via D-N map , 1996 .

[17]  C. Gérard A proof of the abstract limiting absorption principle by energy estimates , 2008 .

[18]  G. Bao,et al.  On the stability of an inverse problem for the wave equation , 2009 .

[19]  Giovanni Monegato,et al.  Exact nonreflecting boundary conditions for exterior wave equation problems , 2014 .

[20]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[21]  Junshan Lin,et al.  A multi-frequency inverse source problem , 2010 .

[22]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[23]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[24]  Gunther Uhlmann,et al.  Increasing stability in an inverse problem for the acoustic equation , 2011, 1110.5145.

[25]  Fixed energy inverse problem for exponentially decreasing potentials , 2003, math/0307253.

[26]  Michael Taylor,et al.  Estimates for Approximate Solutions to Acoustic Inverse Scattering Problems , 1997 .

[27]  J. Schotland,et al.  Near-Field Tomography , 2022 .

[28]  Shmuel Agmon,et al.  Spectral properties of Schrödinger operators and scattering theory , 1975 .

[29]  Gang Bao,et al.  Regularity and Stability for the Scattering Map of a Linearized Inverse Medium Problem , 2000 .

[30]  Giovanni Alessandrini Examples of instability in inverse boundary-value problems , 1997 .

[31]  Giovanni Alessandrini Open issues of stability for the inverse conductivity problem , 2007 .

[32]  D. Donoho,et al.  Uncertainty principles and signal recovery , 1989 .

[33]  Nicolas Burq,et al.  Semi-classical estimates for the resolvent in nontrapping geometries , 2002 .

[34]  Fritz John,et al.  Continuous dependence on data for solutions of partial differential equations with a prescribed bound , 1960 .

[35]  Gunther Uhlmann,et al.  A depth-dependent stability estimate in electrical impedance tomography , 2009 .

[36]  Victor Isakov,et al.  Increased Stability in the Cauchy Problem for Some Elliptic Equations , 2008 .

[37]  J. Garnier,et al.  LIMITED VIEW RESOLVING POWER OF CONDUCTIVITY IMAGING FROM BOUNDARY MEASUREMENTS , 2012 .

[38]  Habib Ammari,et al.  The generalized polarization tensors for resolved imaging Part II: Shape and electromagnetic parameters reconstruction of an electromagnetic inclusion from multistatic measurements , 2012, Math. Comput..

[39]  Hongkai Zhao,et al.  Analysis of the Response Matrix for an Extended Target , 2004, SIAM J. Appl. Math..

[40]  Niculae Mandache,et al.  Exponential instability in an inverse problem for the Schrodinger equation , 2001 .

[41]  Plamen Stefanov Stability of the inverse problem in potential scattering at fixed energy , 1990 .

[42]  Vladimir Rokhlin,et al.  On the inverse scattering problem for the Helmholtz equation in one dimension , 1992 .

[43]  Luis Vega,et al.  Morrey–Campanato Estimates for Helmholtz Equations , 1999 .

[44]  R. A. Silverman,et al.  Special functions and their applications , 1966 .

[45]  Hyeonbae Kang,et al.  Multistatic Imaging of Extended Targets , 2012, SIAM J. Imaging Sci..

[46]  Melrose,et al.  Geometric Scattering Theory , 1995 .

[47]  A. Nachman,et al.  Reconstructions from boundary measurements , 1988 .

[48]  A. G. Ramm,et al.  Recovery of the potential from fixed-energy scattering data , 1988 .

[49]  Mario Bertero,et al.  Resolution and super-resolution in inverse diffraction , 1997 .

[50]  Guo Zhang,et al.  Reconstruction from boundary measurements for less regular conductivities , 2012, 1212.0727.

[51]  Shmuel Agmon,et al.  Asymptotic properties of solutions of differential equations with simple characteristics , 1976 .

[52]  Habib Ammari,et al.  An Introduction to Mathematics of Emerging Biomedical Imaging , 2008 .

[53]  Vu Kim Tuan,et al.  Sampling Eigenvalues in Hardy Spaces , 2007, SIAM J. Numer. Anal..

[54]  H. Ammari,et al.  Resolution and stability analysis in full-aperture, linearized conductivity and wave imaging , 2013 .

[55]  Habib Ammari,et al.  Direct Reconstruction Methods in Ultrasound Imaging of Small Anomalies , 2012 .

[56]  Otmar Scherzer,et al.  Local analysis of inverse problems: Hölder stability and iterative reconstruction , 2011, 1108.3570.

[57]  Josselin Garnier,et al.  Partial Data Resolving Power of Conductivity Imaging from Boundary Measurements , 2013, SIAM J. Math. Anal..

[58]  Yu Chen,et al.  Inverse scattering via Heisenberg's uncertainty principle , 1996 .

[59]  J. Keller,et al.  Exact non-reflecting boundary conditions , 1989 .

[60]  Giovanni Alessandrini,et al.  Stable determination of conductivity by boundary measurements , 1988 .

[61]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[62]  Junshan Lin,et al.  Numerical solution of the inverse source problem for the Helmholtz Equation with multiple frequency data , 2011 .

[63]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .