A Simple Method for Finding Topological Horseshoes

This paper presents an efficient method for finding horseshoes in dynamical systems by using several simple results on topological horseshoes. In this method, a series of points from an attractor o...

[1]  P. Grassberger,et al.  On the symbolic dynamics of the Henon map , 1989 .

[2]  Celso Grebogi,et al.  How long do numerical chaotic solutions remain valid , 1997 .

[3]  Marc Lefranc,et al.  From template analysis to generating partitions I: periodic orbits, knots and symbolic encodings , 1999, chao-dyn/9907029.

[4]  Leon O. Chua,et al.  A New Type of Strange Attractor Related to the Chua's Circuit , 1993, J. Circuits Syst. Comput..

[5]  XIAO-SONG YANG,et al.  On Entropy of Chua's Circuits , 2005, Int. J. Bifurc. Chaos.

[6]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[7]  A. Szymczak The Conley index and symbolic dynamics , 1996 .

[8]  Otto E. Rössler Horseshoe-map chaos in the Lorenz equation , 1977 .

[9]  Qingdu Li,et al.  A computer-assisted verification of hyperchaos in the Saito hysteresis chaos generator , 2006 .

[10]  P. Zgliczynski Computer assisted proof of chaos in the Rössler equations and in the Hénon map , 1997 .

[11]  Qingdu Li,et al.  A topological horseshoe in the hyperchaotic Rossler attractor , 2008 .

[12]  James A. Yorke,et al.  A Chaos Lemma , 2001, The American mathematical monthly.

[13]  Michael Dellnitz,et al.  Global Optimization using a Dynamical Systems Approach , 2006, J. Glob. Optim..

[14]  André de Carvalho,et al.  How to prune a horseshoe , 2002 .

[15]  Xiao-Song Yang,et al.  Horseshoes in piecewise continuous maps , 2004 .

[16]  Qingdu Li,et al.  Chaotic dynamics in a class of three dimensional glass networks. , 2006, Chaos.

[17]  Michael Dellnitz,et al.  Chapter 5 - Set Oriented Numerical Methods for Dynamical Systems , 2002 .

[18]  Xiao-Song Yang,et al.  A planar topological horseshoe theory with applications to computer verifications of chaos , 2005 .

[19]  Xiao-Song Yang,et al.  Topological Horseshoes and Computer Assisted Verification of Chaotic Dynamics , 2009, Int. J. Bifurc. Chaos.

[20]  Marc Lefranc,et al.  From template analysis to generating partitions II: characterization of the symbolic encodings , 1999, chao-dyn/9907030.

[21]  Tibor Csendes,et al.  A Verified Optimization Technique to Locate Chaotic Regions of Hénon Systems , 2006, J. Glob. Optim..

[22]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[23]  Xiao-Song Yang,et al.  Topological horseshoes in continuous maps , 2007 .

[24]  Marian Gidea,et al.  Covering relations for multidimensional dynamical systems , 2004 .