Efficient computation of quasi-periodic circuit operating conditions via a mixed frequency/time approach

Design of communications circuits often requires computing steady-state responses to multiple periodic inputs of differing frequencies. Mixed frequency-time (MFT) approaches are orders of magnitude more efficient than transient circuit simulation, and perform better on highly nonlinear problems than traditional algorithms such as harmonic balance. We present algorithms for solving the huge nonlinear equation systems the MFT approach generates from practical circuits.