Generalized Fokker–Planck equations derived from generalized linear nonequilibrium thermodynamics

Recently, Compte and Jou derived nonlinear diffusion equations by applying the principles of linear nonequilibrium thermodynamics to the generalized nonextensive entropy proposed by Tsallis. In line with this study, stochastic processes in isolated and closed systems characterized by arbitrary generalized entropies are considered and evolution equations for the process probability densities are derived. It is shown that linear nonequilibrium thermodynamics based on generalized entropies naturally leads to generalized Fokker–Planck equations.

[1]  P. T. Landsberg,et al.  Is equilibrium always an entropy maximum? , 1984 .

[2]  D. Stariolo The Langevin and Fokker-Planck equations in the framework of a generalized statistical mechanics , 1994 .

[3]  A. Compte,et al.  Non-equilibrium thermodynamics and anomalous diffusion , 1996 .

[4]  W. Jost,et al.  Diffusion in Solids, Liquids, Gases , 1952, Zeitschrift für Physikalische Chemie.

[5]  A. R. Plastino,et al.  Non-extensive statistical mechanics and generalized Fokker-Planck equation , 1995 .

[6]  Zanette,et al.  Thermodynamics of anomalous diffusion. , 1995, Physical review letters.

[7]  C. Tsallis,et al.  The role of constraints within generalized nonextensive statistics , 1998 .

[8]  Andreas Daffertshofer,et al.  Exact time-dependent solutions of the Renyi Fokker–Planck equation and the Fokker–Planck equations related to the entropies proposed by Sharma and Mittal , 2000 .

[9]  A. Daffertshofer,et al.  Multivariate nonlinear Fokker–Planck equations and generalized thermostatistics , 2001 .

[10]  F. Verhulst Nonlinear Differential Equations and Dynamical Systems , 1989 .

[11]  C. Tsallis Generalized entropy-based criterion for consistent testing , 1998 .

[12]  F. Ritort,et al.  Exactly Solvable Phase Oscillator Models with Synchronization Dynamics , 1998, cond-mat/9803055.

[13]  A. G. Bashkirov,et al.  Information entropy and power-law distributions for chaotic systems , 2000 .

[14]  Microscopic dynamics underlying anomalous diffusion , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  E. K. Lenzi,et al.  Statistical mechanics based on Renyi entropy , 2000 .

[16]  F. Schlögl Small fluctuations in a steady non-equilibrium state , 1979 .

[17]  A. Plastino,et al.  The nonlinear Fokker-Planck equation with state-dependent diffusion - a nonextensive maximum entropy approach , 1999 .

[18]  Diffusion in stationary flow from mesoscopic nonequilibrium thermodynamics. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[20]  A. Compte,et al.  Anomalous diffusion in linear shear flows , 1997 .

[21]  Morton E. Gurtin,et al.  On the diffusion of biological populations , 1977 .

[22]  Solomon Kullback,et al.  Information Theory and Statistics , 1970, The Mathematical Gazette.

[23]  H-theorem for Fokker–Planck equations with drifts depending on process mean values , 2001 .

[24]  M. Shiino H-Theorem with Generalized Relative Entropies and the Tsallis Statistics , 1998 .

[25]  Escape time in anomalous diffusive media. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  G. I. Barenblatt,et al.  Theory of Fluid Flows Through Natural Rocks , 1990 .

[27]  Till D. Frank A Langevin approach for the microscopic dynamics of nonlinear Fokker–Planck equations , 2001 .

[28]  C. Tsallis Nonextensive statistics: theoretical, experimental and computational evidences and connections , 1999, cond-mat/9903356.

[29]  A. Plastino,et al.  Anomalous diffusion coupled with Verhulst-like growth dynamics: exact time-dependent solutions , 2000 .

[30]  C. Tsallis,et al.  Statistical-mechanical foundation of the ubiquity of Lévy distributions in Nature. , 1995, Physical review letters.

[31]  P J Beek,et al.  Stationary solutions of linear stochastic delay differential equations: applications to biological systems. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  H-theorem for electrostatic or self-gravitating Vlasov-Poisson-Fokker-Planck systems , 1996 .

[33]  A. Daffertshofer,et al.  Impacts of statistical feedback on the flexibility-accuracy trade-offin biological systems , 2002, Journal of biological physics.

[34]  R. Johal q calculus and entropy in nonextensive statistical physics , 1998 .

[35]  Till D. Frank On nonlinear and nonextensive diffusion and the second law of thermodynamics , 2000 .

[36]  G. Kaniadakis,et al.  Non-linear kinetics underlying generalized statistics , 2001 .

[37]  Celia Anteneodo,et al.  Maximum entropy approach to stretched exponential probability distributions , 1999 .

[38]  M. O. Cáceres Irreversible thermodynamics in the framework of Tsallis entropy , 1995 .

[39]  H. Risken The Fokker-Planck equation : methods of solution and applications , 1985 .

[40]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[41]  P. Landsberg,et al.  Distributions and channel capacities in generalized statistical mechanics , 1998 .

[42]  T. Yamano Information theory based on nonadditive information content. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Masatoshi Shiino,et al.  Free energies based on generalized entropies and H-theorems for nonlinear Fokker–Planck equations , 2001 .

[44]  E K Lenzi,et al.  Nonlinear equation for anomalous diffusion: Unified power-law and stretched exponential exact solution. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Herbert Spohn,et al.  Surface dynamics below the roughening transition , 1993 .

[46]  Andrés R R Papa On one-parameter-dependent generalizations of Boltzmann-Gibbs statistical mechanics , 1998 .

[47]  A. Plastino On the universality of thermodynamics' Legendre transform structure , 1997 .

[48]  A. R. Plastino,et al.  A nonextensive maximum entropy approach to a family of nonlinear reaction–diffusion equations , 2000 .

[49]  R. Johal Tsallis entropy and q-analogue of information , 1999 .

[50]  A. Daffertshofer,et al.  Multivariate Ornstein-Uhlenbeck processes with mean-field dependent coefficients: application to postural sway. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  G. Lapenta,et al.  Stochastic evolution of systems of particles obeying an exclusion principle , 1996 .

[52]  Tsallis,et al.  Anomalous diffusion in the presence of external forces: Exact time-dependent solutions and their thermostatistical basis. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[53]  A. Wehrl General properties of entropy , 1978 .

[54]  A. Ōkubo,et al.  Di?usion and ecological problems: mathematical models , 1980 .

[55]  Andreas Daffertshofer,et al.  H-theorem for nonlinear Fokker–Planck equations related to generalized thermostatistics , 2001 .

[56]  Constantino Tsallis,et al.  NONEXTENSIVE THERMOSTATISTICS AND FRACTALS , 1995 .

[57]  E. Mello,et al.  The Onsager reciprocity relations within Tsallis statistics , 1997 .

[58]  S. P. Gill,et al.  Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena , 2002 .

[59]  Brownian motion in the presence of a temperature gradient , 1994, cond-mat/9505137.

[60]  R. S. Mendes Some general relations in arbitrary thermostatistics , 1997 .

[61]  Sumiyoshi Abe,et al.  A note on the q-deformation-theoretic aspect of the generalized entropies in nonextensive physics , 1997 .

[62]  Ernesto P. Borges,et al.  A family of nonextensive entropies , 1998 .

[63]  A. Lavagno,et al.  Kinetic approach to fractional exclusion statistics , 1995, hep-th/9507119.

[64]  Andreas Daffertshofer,et al.  H-theorem for a mean field model describing coupled oscillator systems under external forces , 2001 .

[65]  Irreversible processes: The generalized affinities within Tsallis statistics , 1998 .

[66]  Grégoire Nicolis,et al.  Self-Organization in nonequilibrium systems , 1977 .

[67]  Funabashi,et al.  Implications of Form Invariance to the Structure of Nonextensive Entropies , 1999, quant-ph/9904029.

[68]  T. Munakata,et al.  Langevin Dynamics for Generalized Thermodynamics , 2000 .

[69]  Angel Plastino,et al.  Nonlinear Fokker–Planck equations and generalized entropies , 1998 .

[70]  Andreas Daffertshofer,et al.  Nonlinear Fokker-Planck equations whose stationary solutions make entropy-like functionals stationary , 1999 .

[71]  Kaniadakis,et al.  Kinetic equation for classical particles obeying an exclusion principle. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[72]  Lisa Borland,et al.  Ito-Langevin equations within generalized thermostatistics , 1998 .

[73]  Shiino Dynamical behavior of stochastic systems of infinitely many coupled nonlinear oscillators exhibiting phase transitions of mean-field type: H theorem on asymptotic approach to equilibrium and critical slowing down of order-parameter fluctuations. , 1987, Physical review. A, General physics.

[74]  Lisa Borland,et al.  Microscopic dynamics of the nonlinear Fokker-Planck equation: A phenomenological model , 1998 .

[75]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[76]  T. Frank On a general link between anomalous diffusion and nonextensivity , 2002 .

[77]  Anomalous diffusion with absorption: exact time-dependent solutions , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[78]  Kaniadakis,et al.  Classical model of bosons and fermions. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.