Interface investigation of planar hybrid n-Si/PEDOT:PSS solar cells with open circuit voltages up to 645 mV and efficiencies of 12.6 %

We have studied interface formation properties of hybrid n-Si/PEDOT:PSS solar cells on planar substrates by varying the silicon substrate doping concentration (ND). Final power conversion efficiencies (PCE) of 12.6 % and open circuit voltages (Voc) comparable to conventional diffused emitter pn junction solar cells have been achieved. It was observed, that an increase of ND leads to an increase of Voc with a maximal value of 645 mV, which is, to our knowledge, the highest reported value for n-Si/PEDOT:PSS interfaces. The dependence of the solar cell characteristics on ND is analyzed and similarities to minority charge carrier drift-diffusion limited solar cells are presented. The results point out the potential of hybrid n-Si/PEDOT:PSS interfaces to fabricate high performance opto-electronic devices with cost-effective fabrication technologies.

[1]  Q. Qiao,et al.  Conjugated polymer–inorganic semiconductor hybrid solar cells , 2011 .

[2]  E. Yablonovitch Statistical ray optics , 1982 .

[3]  Ching-Fuh Lin,et al.  Morphology Dependence of Silicon Nanowire/Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Heterojunction Solar Cells , 2010 .

[4]  N. Lewis,et al.  Electrical Properties of Junctions between Hg and Si(111) Surfaces Functionalized with Short-Chain Alkyls , 2007 .

[5]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[6]  Hossam Haick,et al.  Tuning the electrical properties of Si nanowire field-effect transistors by molecular engineering. , 2009, Small.

[7]  Shui-Tong Lee,et al.  Efficient organic-inorganic hybrid Schottky solar cell: The role of built-in potential , 2013 .

[8]  G. Araújo,et al.  A new method for experimental determination of the series resistance of a solar cell , 1982, IEEE Transactions on Electron Devices.

[9]  Zongfu Yu,et al.  Hybrid silicon nanocone-polymer solar cells. , 2012, Nano letters.

[10]  P. Yu,et al.  13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering. , 2013, ACS nano.

[11]  A. Ayón,et al.  High efficiency hybrid silicon nanopillar-polymer solar cells. , 2013, ACS applied materials & interfaces.

[12]  S. Kirchmeyer,et al.  Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene) , 2005 .

[13]  N S Lewis,et al.  Thin Films of n-Si/Poly-(CH3)3Si-Cyclooctatetraene: Conducting-Polymer Solar Cells and Layered Structures , 1990, Science.

[14]  Jan Schmidt,et al.  Organic-silicon heterojunction solar cells: Open-circuit voltage potential and stability , 2013 .

[15]  F. Ho,et al.  A comprehensive analytical model for metal-insulator-semiconductor (MIS) devices: a solar cell application , 1993 .

[16]  Martin A. Green,et al.  Review of conductor-insulator-semiconductor (CIS) solar cells , 1981 .

[17]  Qi Chen,et al.  Structure dependence in hybrid Si nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) solar cells: Understanding photovoltaic conversion in nanowire radial junctions , 2012 .

[18]  S. Christiansen,et al.  The Role of Hole Transport in Hybrid Inorganic/Organic Silicon/Poly(3,4-ethylenedioxy-thiophene):Poly(styrenesulfonate) Heterojunction Solar Cells , 2013 .

[19]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[20]  Valentin D. Mihailetchi,et al.  Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells , 2006 .