Asymptotic analysis and diffusion limit of the Persistent Turning Walker Model

The Persistent Turning Walker Model (PTWM) was introduced by Gautrais et al in Mathematical Biology for the modelling of fish motion. It involves a nonlinear pathwise functional of a non-elliptic hypo-elliptic diffusion. This diffusion solves a kinetic Fokker-Planck equation based on an Ornstein-Uhlenbeck Gaussian process. The long time “diffusive” behavior of this model was recently studied by Degond & Motsch using partial differential equations techniques. This model is however intrinsically probabilistic. In the present paper, we show how the long time diffusive behavior of this model can be essentially recovered and extended by using appropriate tools from stochastic analysis. The approach can be adapted to many other kinetic “probabilistic” models.

[1]  L. Young,et al.  STATISTICAL PROPERTIES OF DYNAMICAL SYSTEMS WITH SOME HYPERBOLICITY , 1998 .

[2]  G. Theraulaz,et al.  From individual to collective displacements in heterogeneous environments. , 2008, Journal of theoretical biology.

[3]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[4]  D. Bakry,et al.  Rate of convergence for ergodic continuous Markov processes : Lyapunov versus Poincaré , 2007, math/0703355.

[5]  Y. Kutoyants Statistical Inference for Ergodic Diffusion Processes , 2004 .

[6]  S. Méléard Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models , 1996 .

[7]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[8]  Periodic Homogenization for Hypoelliptic Diffusions , 2004, math-ph/0403003.

[9]  Tamas Vicsek,et al.  A question of scale , 2001, Nature.

[10]  P. Cattiaux,et al.  DEVIATION BOUNDS FOR ADDITIVE FUNCTIONALS OF MARKOV PROCESSES , 2006, math/0603021.

[11]  Galin L. Jones On the Markov chain central limit theorem , 2004, math/0409112.

[12]  G. Theraulaz,et al.  Analyzing fish movement as a persistent turning walker , 2009, Journal of mathematical biology.

[13]  J. Deneubourg,et al.  A model of animal movements in a bounded space. , 2003, Journal of theoretical biology.

[14]  Edward A. Codling,et al.  Random walk models in biology , 2008, Journal of The Royal Society Interface.

[15]  E. Bonabeau,et al.  Spatial patterns in ant colonies , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Inge S. Helland,et al.  Central Limit Theorems for Martingales with Discrete or Continuous Time , 1982 .

[17]  A. Veretennikov,et al.  On the poisson equation and diffusion approximation 3 , 2001, math/0506596.

[18]  Djalil CHAFAÏ,et al.  Sur les in'egalit'es de Sobolev logarithmiques , 2000 .

[19]  P. Degond,et al.  Large Scale Dynamics of the Persistent Turning Walker Model of Fish Behavior , 2007, 0710.4996.

[20]  D. Newton,et al.  ERGODIC THEOREMS (de Gruyter Studies in Mathematics 6) , 1986 .

[21]  A. Sznitman Topics in propagation of chaos , 1991 .

[22]  R. Douc,et al.  Subgeometric rates of convergence of f-ergodic strong Markov processes , 2006, math/0605791.

[23]  S. Varadhan,et al.  Large deviations , 2019, Graduate Studies in Mathematics.

[24]  G. Royer,et al.  Une initiation aux inégalités de Sobolev logarithmiques , 1999 .