Asymptotic analysis and diffusion limit of the Persistent Turning Walker Model
暂无分享,去创建一个
[1] L. Young,et al. STATISTICAL PROPERTIES OF DYNAMICAL SYSTEMS WITH SOME HYPERBOLICITY , 1998 .
[2] G. Theraulaz,et al. From individual to collective displacements in heterogeneous environments. , 2008, Journal of theoretical biology.
[3] M. Yor,et al. Continuous martingales and Brownian motion , 1990 .
[4] D. Bakry,et al. Rate of convergence for ergodic continuous Markov processes : Lyapunov versus Poincaré , 2007, math/0703355.
[5] Y. Kutoyants. Statistical Inference for Ergodic Diffusion Processes , 2004 .
[6] S. Méléard. Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models , 1996 .
[7] A. Shiryaev,et al. Limit Theorems for Stochastic Processes , 1987 .
[8] Periodic Homogenization for Hypoelliptic Diffusions , 2004, math-ph/0403003.
[9] Tamas Vicsek,et al. A question of scale , 2001, Nature.
[10] P. Cattiaux,et al. DEVIATION BOUNDS FOR ADDITIVE FUNCTIONALS OF MARKOV PROCESSES , 2006, math/0603021.
[11] Galin L. Jones. On the Markov chain central limit theorem , 2004, math/0409112.
[12] G. Theraulaz,et al. Analyzing fish movement as a persistent turning walker , 2009, Journal of mathematical biology.
[13] J. Deneubourg,et al. A model of animal movements in a bounded space. , 2003, Journal of theoretical biology.
[14] Edward A. Codling,et al. Random walk models in biology , 2008, Journal of The Royal Society Interface.
[15] E. Bonabeau,et al. Spatial patterns in ant colonies , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[16] Inge S. Helland,et al. Central Limit Theorems for Martingales with Discrete or Continuous Time , 1982 .
[17] A. Veretennikov,et al. On the poisson equation and diffusion approximation 3 , 2001, math/0506596.
[18] Djalil CHAFAÏ,et al. Sur les in'egalit'es de Sobolev logarithmiques , 2000 .
[19] P. Degond,et al. Large Scale Dynamics of the Persistent Turning Walker Model of Fish Behavior , 2007, 0710.4996.
[20] D. Newton,et al. ERGODIC THEOREMS (de Gruyter Studies in Mathematics 6) , 1986 .
[21] A. Sznitman. Topics in propagation of chaos , 1991 .
[22] R. Douc,et al. Subgeometric rates of convergence of f-ergodic strong Markov processes , 2006, math/0605791.
[23] S. Varadhan,et al. Large deviations , 2019, Graduate Studies in Mathematics.
[24] G. Royer,et al. Une initiation aux inégalités de Sobolev logarithmiques , 1999 .