Two Novel Species Isolated from Wheat Rhizospheres in Serbia: Pseudomonas Serbiensis Sp. Nov. And Pseudomonas Serboccidentalis Sp. Nov

[1]  Gerardo Cárcamo-Oyarce,et al.  Pseudomonas putida mediates bacterial killing, biofilm invasion and biocontrol with a type IVB secretion system , 2022, Nature Microbiology.

[2]  H. Sghaier,et al.  Biotechnological potential of Kocuria rhizophila PT10 isolated from roots of Panicum turgidum , 2022, International Journal of Environmental Science and Technology.

[3]  Jan P. Meier-Kolthoff,et al.  TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes , 2021, Nucleic Acids Res..

[4]  Daniel Muller,et al.  Rhizophere analysis of auxin producers harboring the phenylpyruvate decarboxylase pathway , 2022, Applied Soil Ecology.

[5]  J. Lalucat,et al.  Past, present and future of the boundaries of the Pseudomonas genus: Proposal of Stutzerimonas gen. Nov. , 2021, Systematic and applied microbiology.

[6]  Jie Lu,et al.  Iron reduction characteristics and kinetic analysis of Comamonas testosteroni Y1: A potential iron-reduction bacteria , 2021, Biochemical Engineering Journal.

[7]  P. García-Fraile,et al.  Phylogenomic Analyses of the Genus Pseudomonas Lead to the Rearrangement of Several Species and the Definition of New Genera , 2021, Biology.

[8]  Tiago R D Costa,et al.  Type IV secretion systems: Advances in structure, function, and activation , 2020, Molecular microbiology.

[9]  Yong Hoon Lee,et al.  Assessment of the Contribution of Antagonistic Secondary Metabolites to the Antifungal and Biocontrol Activities of Pseudomonas fluorescens NBC275 , 2020, The plant pathology journal.

[10]  S. Oliver,et al.  Comparative Analysis of the Core Proteomes among the Pseudomonas Major Evolutionary Groups Reveals Species-Specific Adaptations for Pseudomonas aeruginosa and Pseudomonas chlororaphis , 2020, Diversity.

[11]  D. Newman,et al.  Global landscape of phenazine biosynthesis and biodegradation reveals species-specific colonization patterns in agricultural soils and crop microbiomes , 2020, bioRxiv.

[12]  T. Kirikae,et al.  Pseudomonas atagosis sp. nov., and Pseudomonas akappagea sp. nov., New Soil Bacteria Isolated from Samples on the Volcanic Island Izu Oshima, Tokyo , 2020, Current Microbiology.

[13]  C. Médigue,et al.  MicroScope: an integrated platform for the annotation and exploration of microbial gene functions through genomic, pangenomic and metabolic comparative analysis , 2019, Nucleic Acids Res..

[14]  A. Imran,et al.  Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity. , 2019, Microbiological research.

[15]  M. Delledonne,et al.  Not Just a Pathogen? Description of a Plant-Beneficial Pseudomonas syringae Strain , 2019, Front. Microbiol..

[16]  Jan P. Meier-Kolthoff,et al.  TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy , 2019, Nature Communications.

[17]  S. Lee,et al.  antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline , 2019, Nucleic Acids Res..

[18]  L. Lipiński,et al.  Genomic and Functional Characterization of Environmental Strains of SDS-Degrading Pseudomonas spp., Providing a Source of New Sulfatases , 2018, Front. Microbiol..

[19]  Jia Gu,et al.  fastp: an ultra-fast all-in-one FASTQ preprocessor , 2018, bioRxiv.

[20]  Henrik Christensen,et al.  Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. , 2018, International journal of systematic and evolutionary microbiology.

[21]  E. Velázquez,et al.  The current status on the taxonomy of Pseudomonas revisited: An update. , 2018, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[22]  C. Prigent-Combaret,et al.  Phylogenetic diversity and antagonistic traits of root and rhizosphere pseudomonads of bean from Iran for controlling Rhizoctonia solani. , 2017, Research in microbiology.

[23]  J. Chun,et al.  Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies , 2017, International journal of systematic and evolutionary microbiology.

[24]  Ryan R. Wick,et al.  Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads , 2016, bioRxiv.

[25]  C. Prigent-Combaret,et al.  Fluorescent Pseudomonas Strains with only Few Plant-Beneficial Properties Are Favored in the Maize Rhizosphere , 2016, Front. Plant Sci..

[26]  Peer Bork,et al.  Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees , 2016, Nucleic Acids Res..

[27]  Jan P. Meier-Kolthoff,et al.  Genomic and Genetic Diversity within the Pseudomonas fluorescens Complex , 2016, PloS one.

[28]  Jörg Peplies,et al.  JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison , 2015, Bioinform..

[29]  Brian D. Ondov,et al.  Mash: fast genome and metagenome distance estimation using MinHash , 2015, Genome Biology.

[30]  Jonathan D. G. Jones,et al.  Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea , 2015, Front. Microbiol..

[31]  A. de Vicente,et al.  Cellulose production in Pseudomonas syringae pv. syringae: a compromise between epiphytic and pathogenic lifestyles. , 2015, FEMS microbiology ecology.

[32]  Olivier Gascuel,et al.  FastME 2.0: A Comprehensive, Accurate, and Fast Distance-Based Phylogeny Inference Program , 2015, Molecular biology and evolution.

[33]  H. Bais,et al.  A natural rice rhizospheric bacterium abates arsenic accumulation in rice (Oryza sativa L.) , 2015, Planta.

[34]  N. Wierckx,et al.  Complete genome sequence of solvent-tolerant Pseudomonas putida S12 including megaplasmid pTTS12. , 2015, Journal of biotechnology.

[35]  J. Lalucat,et al.  Phylogenomics and systematics in Pseudomonas , 2015, Front. Microbiol..

[36]  Chao Xie,et al.  Fast and sensitive protein alignment using DIAMOND , 2014, Nature Methods.

[37]  C. Prigent-Combaret,et al.  Analysis of genes contributing to plant-beneficial functions in plant growth-promoting rhizobacteria and related Proteobacteria , 2014, Scientific Reports.

[38]  I. Schalk,et al.  Pyoverdine biosynthesis and secretion in Pseudomonas aeruginosa: implications for metal homeostasis. , 2013, Environmental microbiology.

[39]  Alexander F. Auch,et al.  Genome sequence-based species delimitation with confidence intervals and improved distance functions , 2013, BMC Bioinformatics.

[40]  R. Amann,et al.  Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota , 2012, Nature.

[41]  Young Cheol Kim,et al.  Comparative Genomics of Plant-Associated Pseudomonas spp.: Insights into Diversity and Inheritance of Traits Involved in Multitrophic Interactions , 2012, PLoS genetics.

[42]  G. Défago,et al.  Evolutionary history of synthesis pathway genes for phloroglucinol and cyanide antimicrobials in plant-associated fluorescent pseudomonads. , 2012, Molecular phylogenetics and evolution.

[43]  Robert B. Young,et al.  Testosterone-mineralizing culture enriched from swine manure: characterization of degradation pathways and microbial community composition. , 2011, Environmental science & technology.

[44]  M. Silby,et al.  Pseudomonas genomes: diverse and adaptable. , 2011, FEMS microbiology reviews.

[45]  San-feng Chen,et al.  Metabolic engineering for ethylene production by inserting the ethylene-forming enzyme gene (efe) at the 16S rDNA sites of Pseudomonas putida KT2440. , 2010, Bioresource technology.

[46]  C. Keel,et al.  Interplay between Wheat Cultivars, Biocontrol Pseudomonads, and Soil , 2010, Applied and Environmental Microbiology.

[47]  J. Lalucat,et al.  DNA sequence-based analysis of the Pseudomonas species. , 2010, Environmental microbiology.

[48]  F. O'Gara,et al.  Biochemical and genomic comparison of inorganic phosphate solubilization in Pseudomonas species. , 2009, Environmental microbiology reports.

[49]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[50]  Mathias Schäfer,et al.  Siderophore-mediated iron acquisition in the entomopathogenic bacterium Pseudomonas entomophila L48 and its close relative Pseudomonas putida KT2440 , 2009, BioMetals.

[51]  W. Nicholson The Bacillus subtilis ydjL (bdhA) Gene Encodes Acetoin Reductase/2,3-Butanediol Dehydrogenase , 2008, Applied and Environmental Microbiology.

[52]  Peter F. Hallin,et al.  RNAmmer: consistent and rapid annotation of ribosomal RNA genes , 2007, Nucleic acids research.

[53]  G. Défago,et al.  Phylogeny of HCN synthase-encoding hcnBC genes in biocontrol fluorescent pseudomonads and its relationship with host plant species and HCN synthesis ability. , 2003, Molecular plant-microbe interactions : MPMI.

[54]  B. Glick,et al.  Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. , 2003, Physiologia plantarum.

[55]  S. Lam,et al.  2,5-Dialkylresorcinol Biosynthesis in Pseudomonas aurantiaca: Novel Head-to-Head Condensation of Two Fatty Acid-Derived Precursors , 2003, Journal of bacteriology.

[56]  K. Elbing,et al.  Media Preparation and Bacteriological Tools , 2002, Current protocols in molecular biology.

[57]  C. Walsh,et al.  Essential PchG-Dependent Reduction in Pyochelin Biosynthesis of Pseudomonas aeruginosa , 2001, Journal of bacteriology.

[58]  L. Thomashow,et al.  Identification and Characterization of a Gene Cluster for Synthesis of the Polyketide Antibiotic 2,4-Diacetylphloroglucinol from Pseudomonas fluorescens Q2-87 , 1999, Journal of bacteriology.

[59]  S. Gould,et al.  Characterization of the Pyoluteorin Biosynthetic Gene Cluster of Pseudomonas fluorescens Pf-5 , 1999, Journal of bacteriology.

[60]  D. Hill,et al.  Functions Encoded by Pyrrolnitrin Biosynthetic Genes from Pseudomonas fluorescens , 1998, Journal of bacteriology.

[61]  A. Steinbüchel,et al.  Molecular characterization of the Pseudomonas putida 2,3-butanediol catabolic pathway. , 1994, FEMS microbiology letters.

[62]  M. Penttilä,et al.  Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes , 1993, Journal of bacteriology.

[63]  J. Tiedje,et al.  Immunological identification and distribution of dissimilatory heme cd1 and nonheme copper nitrite reductases in denitrifying bacteria , 1989, Applied and environmental microbiology.

[64]  B. Schippers,et al.  Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas SPP-mediated plant growth-stimulation , 1987 .

[65]  A. Bauer,et al.  Antibiotic susceptibility testing by a standardized single disk method. , 1966, American journal of clinical pathology.