Numerical Methods for Differential Equations in Random Domains

Physical phenomena in domains with rough boundaries play an important role in a variety of applications. Often the topology of such boundaries cannot be accurately described in all of its relevant detail due to either insufficient data or measurement errors or both. This topological uncertainty can be efficiently handled by treating rough boundaries as random fields, so that an underlying physical phenomenon is described by deterministic or stochastic differential equations in random domains. To deal with this class of problems, we propose a novel computational framework, which is based on using stochastic mappings to transform the original deterministic/stochastic problem in a random domain into a stochastic problem in a deterministic domain. The latter problem has been studied more extensively, and existing analytical/numerical techniques can be readily applied. In this paper, we employ both a stochastic Galerkin method and Monte Carlo simulations to solve the transformed stochastic problem. We demonstrate our approach by applying it to an elliptic problem in single- and double-connected random domains, and comment on the accuracy and convergence of the numerical methods.

[1]  R. Ghanem,et al.  Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .

[2]  Mark G. Blyth,et al.  Heat conduction across irregular and fractal-like surfaces , 2003 .

[3]  Anil W. Date,et al.  Numerical Grid Generation , 2005 .

[4]  R. Ghanem,et al.  Uncertainty propagation using Wiener-Haar expansions , 2004 .

[5]  Geoffrey Ingram Taylor,et al.  A model for the boundary condition of a porous material. Part 1 , 1971, Journal of Fluid Mechanics.

[6]  Herbert H. H. Homeier,et al.  Effects of local field variations on the contrast of a field-ion microscope , 1983 .

[7]  Jan Chleboun,et al.  Effects of uncertainties in the domain on the solution of Neumann boundary value problems in two spatial dimensions , 2002, Math. Comput..

[8]  H. Andren,et al.  Atom‐probe field‐ion microscopy , 2007 .

[9]  M. Shinozuka,et al.  Digital Generation of Non‐Gaussian Stochastic Fields , 1988 .

[10]  森山 昌彦,et al.  「確率有限要素法」(Stochastic Finite Element Method) , 1985 .

[11]  Jan Chleboun,et al.  Effects of uncertainties in the domain on the solution of Dirichlet boundary value problems , 2003, Numerische Mathematik.

[12]  M. Shinozuka,et al.  Simulation of Stochastic Processes by Spectral Representation , 1991 .

[13]  D. Xiu,et al.  Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .

[14]  J. Greenwood,et al.  Contact of nominally flat surfaces , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[15]  I. Babuska,et al.  Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .

[16]  M. Grigoriu Simulation of stationary non-Gaussian translation processes , 1998 .

[17]  Mark Brady,et al.  Diffusive transport across irregular and fractal walls , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[18]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[19]  Roger G. Ghanem,et al.  Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure , 2005, SIAM J. Sci. Comput..

[20]  Daniel M. Tartakovsky,et al.  Interface dynamics in randomly heterogeneous porous media , 2005 .

[21]  S. Richardson,et al.  A model for the boundary condition of a porous material. Part 2 , 1971, Journal of Fluid Mechanics.

[22]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[23]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[24]  Wing Kam Liu,et al.  Probabilistic finite elements for nonlinear structural dynamics , 1986 .

[25]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[26]  P. Frauenfelder,et al.  Finite elements for elliptic problems with stochastic coefficients , 2005 .

[27]  Shu-Kun Lin,et al.  Shape and Structure, from Engineering to Nature , 2001, Entropy.

[28]  J. Hansen,et al.  Shape and Structure , 2001 .

[29]  Roger Ghanem,et al.  Simulation of multi-dimensional non-gaussian non-stationary random fields , 2002 .

[30]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[31]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[32]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[33]  Sarkar,et al.  Gradients of potential fields on rough surfaces: Perturbative calculation of the singularity distribution function f( alpha ) for small surface dimension. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[34]  Humberto Contreras,et al.  The stochastic finite-element method , 1980 .

[35]  Marios M. Fyrillas,et al.  Conductive heat transport across rough surfaces and interfaces between two conforming media , 2001 .

[36]  Carl J. G. Evertsz,et al.  Harmonic measure around a linearly self-similar tree , 1992 .

[37]  George Em Karniadakis,et al.  Modeling Uncertainty In Three-dimensional HeatTransfer Problems , 2004 .

[38]  J Rudzitis,et al.  Random process model of rough surfaces contact , 1998 .

[39]  Roberto F. S. Andrade,et al.  Fractal properties of equipotentials close to a rough conducting surface , 1999 .