High speed 4D printing of shape memory polymers with nanosilica

[1]  Florencia Edith Wiria,et al.  3D Stereolithography of Polymer Composites Reinforced with Orientated Nanoclay , 2017 .

[2]  Lixia Ling,et al.  Surface modification of nanosilica with 3-mercaptopropyl trimethoxysilane and investigation of its effect on the properties of UV curable coatings , 2013, Journal of Coatings Technology and Research.

[3]  Martin L. Dunn,et al.  Controlled Sequential Shape Changing Components by 3D Printing of Shape Memory Polymer Multimaterials , 2015 .

[4]  Doyoon Kim,et al.  Heterogeneous Nucleation and Growth of Nanoparticles at Environmental Interfaces. , 2016, Accounts of chemical research.

[5]  John W. Halloran,et al.  Freeform Fabrication of Ceramics via Stereolithography , 2005 .

[6]  Dichen Li,et al.  The influence of ingredients of silica suspensions and laser exposure on UV curing behavior of aqueous ceramic suspensions in stereolithography , 2011 .

[7]  A. Hartwig,et al.  Shape memory polyurethanes cross-linked by surface modified silica particles , 2009 .

[8]  Qihua Wang,et al.  High-strain shape memory polymer networks crosslinked by SiO2 , 2011 .

[9]  Pei-Chen Su,et al.  Curing characteristics of shape memory polymers in 3D projection and laser stereolithography , 2017 .

[10]  Fei Wang,et al.  Liquid Resins-Based Additive Manufacturing , 2017 .

[11]  Fuke Wang,et al.  Photopolymer resins for luminescent three‐dimensional printing , 2017 .

[12]  K. Bula,et al.  Nucleation ability of advanced functional silica/lignin hybrid fillers in polypropylene composites , 2016, Journal of Thermal Analysis and Calorimetry.

[13]  D. F. Swinehart,et al.  The Beer-Lambert Law , 1962 .

[14]  J. Baur,et al.  Highly dispersed nanosilica–epoxy resins with enhanced mechanical properties , 2008 .

[15]  Pei-Chen Su,et al.  4D printing of high performance shape memory polymer using stereolithography , 2017 .

[16]  Wei Long Ng,et al.  Print Me An Organ! Why We Are Not There Yet , 2019, Progress in Polymer Science.

[17]  Chee Kai Chua,et al.  A review of printed passive electronic components through fully additive manufacturing methods , 2016 .

[18]  Anthony J. Kinloch,et al.  Toughening mechanisms of nanoparticle-modified epoxy polymers , 2007 .

[19]  John R. Tumbleston,et al.  Continuous liquid interface production of 3D objects , 2015, Science.

[20]  Chih-Yuan Hsu,et al.  Preparation and thermal properties of epoxy-silica nanocomposites from nanoscale colloidal silica , 2003 .

[21]  J. C. H. Affdl,et al.  The Halpin-Tsai Equations: A Review , 1976 .

[22]  A. Shortall,et al.  Refractive Index Mismatch and Monomer Reactivity Influence Composite Curing Depth , 2008, Journal of dental research.

[23]  P. Su,et al.  Curing behaviour and characteristics of shape memory polymers by uv based 3D printing , 2016 .

[24]  Zhongya Zhang,et al.  Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content , 2006 .

[25]  Ramesh Raskar,et al.  Active Printed Materials for Complex Self-Evolving Deformations , 2014, Scientific Reports.

[26]  S. Zissi,et al.  Stereolithography and microtechniques , 1996 .

[27]  Chee Kai Chua,et al.  3D printing and additive manufacturing : principles and applications , 2015 .

[28]  B. Hsiao,et al.  Easy alignment and effective nucleation activity of ramie fibers in injection-molded poly(lactic acid) biocomposites. , 2012, Biopolymers.

[29]  L. Ye,et al.  Epoxy/Silica Nanocomposites: Nanoparticle‐Induced Cure Kinetics and Microstructure , 2007 .

[30]  F. E. Wiria,et al.  Development of CNTs-filled photopolymer for projection stereolithography , 2017 .

[31]  L. Nielsen Simple theory of stress-strain properties of filled polymers† , 1966 .

[32]  Ilhan A. Aksay,et al.  Cure depth in photopolymerization: Experiments and theory , 2001 .

[33]  L. Matějka,et al.  Tailored high performance shape memory epoxy–silica nanocomposites. Structure design , 2016 .