Phylogeny of the Poritiinae (Lepidoptera: Lycaenidae), butterflies with ant associations and unusual lichenivorous diets

The Poritiinae are a diverse subfamily of lycaenid butterflies with about 700 species divided into two major groups: the Asian endemic tribe Poritiini, and the African endemic tribe Liptenini. Among these, the Liptenini are notable for their lichenivorous diet and the strong but apparently non‐mutualistic ant associations of many species. We present the first molecular phylogeny for this subfamily, based on data from 14 gene regions, and including 218 representatives from 177 taxa (approximately 25% of species) in 50 of the 58 (86%) recognized genera. From this analysis, we confirm the division of the subfamily into two tribes, and we rearrange the Liptenini tribe into six subtribes, Durbaniina, Pentilina, Liptenina, Iridanina and Epitolina, plus a new tribe, Cooksoniina subtrib. n., to fill a gap in the nomenclature revealed by the phylogenetic analysis. We also point to several genera in need of further taxonomic revision. Ancestral range reconstruction could not infer the range of the common ancestor of the Poritiinae; however, the common ancestor of the Poritiini was likely Asian, while that of the Liptenini was likely African, with subsequent narrowing of ranges in several lineages.

[1]  K. Fiedler The ant associates of Lycaenidae butterfly caterpillars – revisited , 2021, Nota Lepidopterologica.

[2]  David J. Lohman,et al.  Phylogenetics of moth-like butterflies (Papilionoidea: Hedylidae) based on a new 13-locus target capture probe set. , 2018, Molecular phylogenetics and evolution.

[3]  Emmanuel Paradis,et al.  ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R , 2018, Bioinform..

[4]  L. Biró,et al.  The Only Blue Mimeresia (Lepidoptera: Lycaenidae: Lipteninae) Uses a Color-Generating Mechanism Widely Applied by Butterflies , 2018, Journal of insect science.

[5]  Richard H. Ree,et al.  Conceptual and statistical problems with the DEC+J model of founder‐event speciation and its comparison with DEC via model selection , 2018 .

[6]  A. Kawahara,et al.  A phylogenomic analysis of lichen-feeding tiger moths uncovers evolutionary origins of host chemical sequestration. , 2018, Molecular phylogenetics and evolution.

[7]  Gerard Talavera,et al.  A Comprehensive and Dated Phylogenomic Analysis of Butterflies , 2018, Current Biology.

[8]  A. von Haeseler,et al.  UFBoot2: Improving the Ultrafast Bootstrap Approximation , 2017, bioRxiv.

[9]  Thomas K. F. Wong,et al.  ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates , 2017, Nature Methods.

[10]  J. Orivel,et al.  Ant-lepidopteran associations along African forest edges , 2017, The Science of Nature.

[11]  Olga Chernomor,et al.  Terrace Aware Data Structure for Phylogenomic Inference from Supermatrices , 2016, Systematic biology.

[12]  David J. Lohman,et al.  When caterpillars attack: Biogeography and life history evolution of the Miletinae (Lepidoptera: Lycaenidae) , 2015, Evolution; international journal of organic evolution.

[13]  N. Pierce,et al.  Phylogeny of the Aphnaeinae: myrmecophilous African butterflies with carnivorous and herbivorous life histories , 2015 .

[14]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[15]  N. Matzke,et al.  Model selection in historical biogeography reveals that founder-event speciation is a crucial process in Island Clades. , 2014, Systematic biology.

[16]  Michael J. Landis,et al.  Bayesian analysis of biogeography when the number of areas is large. , 2013, Systematic biology.

[17]  R. Vilà,et al.  Establishing criteria for higher‐level classification using molecular data: the systematics of Polyommatus blue butterflies (Lepidoptera, Lycaenidae) , 2013 .

[18]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[19]  J. Fjeldså,et al.  The partitioning of Africa: statistically defined biogeographical regions in sub‐Saharan Africa , 2012 .

[20]  T. Larsen,et al.  On the ecology and behavior of Cerautola crowleyi (Sharpe, 1890), Cerautola ceraunia (Hewitson, 1873) and Cerautola miranda (Staudinger, 1889) with descriptions of early stages (Lepidoptera: Lycaenidae, Epitolini). , 2009 .

[21]  J. Richardson,et al.  Molecular phylogenetics reveal multiple tertiary vicariance origins of the African rain forest trees , 2008, BMC Biology.

[22]  C. Moreau,et al.  Exploring phenotypic plasticity and biogeography in emerald moths: A phylogeny of the genus Nemoria (Lepidoptera: Geometridae). , 2008, Molecular phylogenetics and evolution.

[23]  D. Wijesundara,et al.  Insights into the unique butterfly-lichen association between Talicada nyseus nyseus and Leproloma sipmanianum , 2008 .

[24]  Stephen A. Smith,et al.  Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. , 2008, Systematic biology.

[25]  Ermias T. Azeria,et al.  Biogeographic patterns of the East African coastal forest vertebrate fauna , 2007, Biodiversity and Conservation.

[26]  Mark C. Williams What do the larvae of Alaena amazoula (Boisduval, 1847) (Lepidoptera: Lycaenidae: Poritiinae) feed on? , 2006 .

[27]  Niklas Wahlberg,et al.  Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers , 2005, Proceedings of the Royal Society B: Biological Sciences.

[28]  T. Larsen Butterflies of West Africa , 2005 .

[29]  J. Moulton,et al.  Evolution and phylogenetic utility of CAD (rudimentary) among Mesozoic-aged Eremoneuran Diptera (Insecta). , 2004, Molecular phylogenetics and evolution.

[30]  R. DeSalle,et al.  Patterns of mitochondrial versus nuclear DNA sequence divergence among nymphalid butterflies: the utility of wingless as a source of characters for phylogenetic inference , 1998, Insect molecular biology.

[31]  Brian D. Farrell,et al.  20. Evolution of Larval Food Preferences in Lepidoptera , 1998 .

[32]  Fredrik Ronquist,et al.  Dispersal-Vicariance Analysis: A New Approach to the Quantification of Historical Biogeography , 1997 .

[33]  R. Poole,et al.  A highly conserved nuclear gene for low-level phylogenetics: elongation factor-1 alpha recovers morphology-based tree for heliothine moths. , 1995, Molecular biology and evolution.

[34]  N. Matzke,et al.  Statistical Comparison of Trait-dependent Biogeographical Models indicates that Podocarpaceae Dispersal is influenced by both Seed Cone Traits and Geographical Distance. , 2019, Systematic biology.

[35]  A. Lemmon,et al.  Resolving Relationships among the Megadiverse Butterflies and Moths with a Novel Pipeline for Anchored Phylogenomics , 2018, Systematic biology.

[36]  N. Matzke Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing , 2013 .

[37]  D. Wagner,et al.  Larva of Abablemma (Noctuidae) with Notes on Algivory and Lichenivory in Macrolepidoptera , 2008 .

[38]  David J. Lohman,et al.  The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). , 2002, Annual review of entomology.

[39]  M. Libert Le genre Ornipholidotos Bethune-Baker au Cameroun. Descriptions du genre Torbenia n. gen. et de onze nouvelles espèces (Lepidoptera, Lycaenidae) , 2000, Bulletin de la Société entomologique de France.

[40]  N. Pierce Predatory and parasitic Lepidoptera: carnivores living on plants. , 1995 .

[41]  H. M. Pendlebury,et al.  The butterflies of the Malay Peninsula , 1992 .

[42]  K. Fiedler Systematic, evolutionary, and ecological implications of myrmecophily within the Lycaenidae (Insecta: Lepidoptera: Papilionoidea) , 1991 .

[43]  J. Eliot The higher classification of the Lycaenidae (Lepidoptera): a tentative arrangement , 1973 .

[44]  H. Stempffer The genera of the African Lycaenidae (Lepidoptera : Rhopalocera) , 1967 .

[45]  P. Ehrlich The comparative morphology, phylogeny and higher classification of the butterflies (Lepidoptera: Papilionoidea) , 1958 .

[46]  H. Clench Revised classification of the butterfly family Lycaenidae and its allies , 1955, Annals of the Carnegie Museum.

[47]  C. B. Antram Butterflies of India , 1925, Nature.

[48]  H. Fruhstorfer Uebersicht der Lycaeniden des Indo-Australischen Gebiets , 2022 .