Observation of the effect of gravity on the motion of antimatter
暂无分享,去创建一个
Alan C. Evans | J. Wurtele | J. Fajans | G. Bonomi | M. Fujiwara | J. Hangst | N. Madsen | W. Bertsche | A. Capra | C. L. Cesar | M. Charlton | R. Collister | N. Evetts | T. Friesen | D. Gill | M. Hayden | C. A. Isaac | J. Jones | S. A. Jones | S. Jonsell | D. Maxwell | S. Menary | K. Olchanski | C. Rasmussen | F. Robicheaux | R. Sacramento | M. Sameed | D. M. Silveira | G. Stutter | C. So | T. Tharp | A. Christensen | P. Grandemange | P. Granum | E. Hunter | P. Mullan | S. Stracka | E. Sarid | A. N. Oliveira | I. Carli | M. Urioni | Anamaria Golemac Powell | L. Martin | N. Massacret | P. Woosaree | J. McKenna | T. Momose | A. Cridland Mathad | C. Torkzaban | S. Eriksson | R. Thompson | E. K. Anderson | C. J. Baker | N. M. Bhatt | D. Duque Quiceno | S. Fabbri | A. Ferwerda | L. M. Golino | M. B. Gomes Gonçalves | D. Hodgkinson | A. J. U. Jimenez | M. A. Johnson | A. Khramov | M. Mostamand | J. Nauta | J. Peszka | J. Schoonwater | J. Singh | G. Smith | K. A. Thompson | E. Thorpe-Woods
[1] C. Dimopoulos,et al. Hubble law and acceleration curve emerges in a repulsive matter-antimatter galaxies simulation , 2022, Astroparticle Physics.
[2] C. J. Baker,et al. Design and performance of a novel low energy multispecies beamline for an antihydrogen experiment , 2022, Physical Review Accelerators and Beams.
[3] C. Malbrunot,et al. ELENA: Bright Perspectives for Low Energy Antiproton Physics , 2022, Nuclear Physics News.
[4] C. Ospelkaus,et al. A 16-parts-per-trillion measurement of the antiproton-to-proton charge–mass ratio , 2022, Nature.
[5] C. J. Baker,et al. Sympathetic cooling of positrons to cryogenic temperatures for antihydrogen production , 2021, Nature Communications.
[6] Alan C. Evans,et al. Laser cooling of antihydrogen atoms , 2021, Nature.
[7] J. Fajans,et al. The ALPHA-g Antihydrogen Gravity Magnet System , 2020, IEEE Transactions on Applied Superconductivity.
[8] J. Fajans,et al. Plasma temperature measurement with a silicon photomultiplier (SiPM). , 2020, The Review of scientific instruments.
[9] C. J. Baker,et al. Investigation of the fine structure of antihydrogen , 2020, Nature.
[10] N. L. Harshman,et al. Introduction to Quantum Mechanics (3rded.) , 2019, American Journal of Physics.
[11] B. Mansoulié. Status of the GBAR experiment at CERN , 2019, Hyperfine Interactions.
[12] J. Wurtele,et al. Electron cyclotron resonance (ECR) magnetometry with a plasma reservoir , 2018, Physics of Plasmas.
[13] Alan C. Evans,et al. Observation of the 1S–2P Lyman-α transition in antihydrogen , 2018, Nature.
[14] David J. Griffiths,et al. Introduction to Quantum Mechanics by David J. Griffiths , 2018 .
[15] J. Fajans,et al. Axial to transverse energy mixing dynamics in octupole-based magnetostatic antihydrogen traps , 2018 .
[16] C. J. Baker,et al. Characterization of the 1S–2S transition in antihydrogen , 2018, Nature.
[17] A. Fontana,et al. AEgIS at ELENA: outlook for physics with a pulsed cold antihydrogen beam , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[18] C. J. Baker,et al. Antihydrogen accumulation for fundamental symmetry tests , 2017, Nature Communications.
[19] C. J. Baker,et al. Observation of the hyperfine spectrum of antihydrogen , 2017, Nature.
[20] C. J. Baker,et al. Observation of the 1S–2S transition in trapped antihydrogen , 2016, Nature.
[21] Hiroyuki Yamada,et al. Buffer-gas cooling of antiprotonic helium to 1.5 to 1.7 K, and antiproton-to–electron mass ratio , 2016, Science.
[22] F. Retière,et al. Design of a Radial TPC for Antihydrogen Gravity Measurement with ALPHA-g , 2016, 1609.06656.
[23] The Ligo Scientific Collaboration,et al. Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.
[24] A. Zhmoginov,et al. An improved limit on the charge of antihydrogen from stochastic acceleration , 2016, Nature.
[25] J. Wurtele,et al. In situ electromagnetic field diagnostics with an electron plasma in a Penning–Malmberg trap , 2014, 1405.0692.
[26] A. Zhmoginov,et al. Antimatter interferometry for gravity measurements. , 2013, Physical review letters.
[27] A. Little,et al. Description and first application of a new technique to measure the gravitational mass of antihydrogen , 2013, Nature Communications.
[28] J. Wurtele,et al. Resonant quantum transitions in trapped antihydrogen atoms , 2012, Nature.
[29] S. Jonsell,et al. Helium–antihydrogen scattering at low energies , 2012 .
[30] D. Hajdukovic. Quantum vacuum and virtual gravitational dipoles: the solution to the dark energy problem? , 2012, 1201.4594.
[31] A. Benoit-Lévy,et al. Introducing the Dirac-Milne universe , 2011, 1110.3054.
[32] M. Villata. CPT symmetry and antimatter gravity in general relativity , 2011, 1103.4937.
[33] J. Wurtele,et al. Evaporative cooling of antiprotons to cryogenic temperatures. , 2010, Physical review letters.
[34] H. Fenker,et al. BoNus : Development and use of a radial TPC using cylindrical GEMs , 2008 .
[35] The Ceres Collaboration. The CERES/NA45 Radial Drift Time Projection Chamber , 2008, 0802.1443.
[36] M. Wolter,et al. TMVA - Toolkit for Multivariate Data Analysis , 2007, physics/0703039.
[37] J. Fajans,et al. A magnetic trap for antihydrogen confinement , 2006 .
[38] F. Robicheaux,et al. Radiative cascade of highly excited hydrogen atoms in strong magnetic fields (10 pages) , 2006 .
[39] A. Fontana,et al. Production and detection of cold antihydrogen atoms , 2002, Nature.
[40] A. Ealet,et al. Tests of the Equivalence Principle with neutral kaons , 1999, hep-ex/9903005.
[41] M. Charlton,et al. Stored positrons for antihydrogen production , 1997 .
[42] C. L. Cesar. Trapping and spectroscopy of hydrogen , 1997 .
[43] J. Tuyn,et al. The Antiproton Decelerator: AD , 1997, Proceedings of the 1997 Particle Accelerator Conference (Cat. No.97CH36167).
[44] Wurtele,et al. Asymmetric stable equilibria of non-neutral plasmas. , 1992, Physical Review Letters.
[45] A. Hyatt,et al. Parallel energy analyzer for pure electron plasma devices , 1992 .
[46] M. Nieto,et al. The arguments against ``antigravity'' and the gravitational acceleration of antimatter , 1991 .
[47] Richard J. Hughes,et al. Constraints on the gravitational properties of antiprotons and positrons from cyclotron-frequency measurements. , 1991, Physical review letters.
[48] F. Witteborn,et al. Experiments to determine the Force of Gravity on Single Electrons and Positrons , 1968, Nature.
[49] P. Blackett. The Positive Electron , 1933, Nature.
[50] P. Dirac. The quantum theory of the electron , 1928 .
[51] C. J. Baker,et al. Enhanced Control and Reproducibility of Non-Neutral Plasmas. , 2018, Physical Review Letters.
[52] M. Charlton,et al. Manipulation of the magnetron orbit of a positron cloud in a Penning trap , 2013 .
[53] J. Wurtele,et al. Trapped antihydrogen , 2010, Nature.
[54] F. Dyson,et al. A Determination of the Deflection of Light by the Sun's Gravitational Field, from Observations Made at the Total Eclipse of May 29, 1919 , 1920 .