Observation of the effect of gravity on the motion of antimatter

[1]  C. Dimopoulos,et al.  Hubble law and acceleration curve emerges in a repulsive matter-antimatter galaxies simulation , 2022, Astroparticle Physics.

[2]  C. J. Baker,et al.  Design and performance of a novel low energy multispecies beamline for an antihydrogen experiment , 2022, Physical Review Accelerators and Beams.

[3]  C. Malbrunot,et al.  ELENA: Bright Perspectives for Low Energy Antiproton Physics , 2022, Nuclear Physics News.

[4]  C. Ospelkaus,et al.  A 16-parts-per-trillion measurement of the antiproton-to-proton charge–mass ratio , 2022, Nature.

[5]  C. J. Baker,et al.  Sympathetic cooling of positrons to cryogenic temperatures for antihydrogen production , 2021, Nature Communications.

[6]  Alan C. Evans,et al.  Laser cooling of antihydrogen atoms , 2021, Nature.

[7]  J. Fajans,et al.  The ALPHA-g Antihydrogen Gravity Magnet System , 2020, IEEE Transactions on Applied Superconductivity.

[8]  J. Fajans,et al.  Plasma temperature measurement with a silicon photomultiplier (SiPM). , 2020, The Review of scientific instruments.

[9]  C. J. Baker,et al.  Investigation of the fine structure of antihydrogen , 2020, Nature.

[10]  N. L. Harshman,et al.  Introduction to Quantum Mechanics (3rded.) , 2019, American Journal of Physics.

[11]  B. Mansoulié Status of the GBAR experiment at CERN , 2019, Hyperfine Interactions.

[12]  J. Wurtele,et al.  Electron cyclotron resonance (ECR) magnetometry with a plasma reservoir , 2018, Physics of Plasmas.

[13]  Alan C. Evans,et al.  Observation of the 1S–2P Lyman-α transition in antihydrogen , 2018, Nature.

[14]  David J. Griffiths,et al.  Introduction to Quantum Mechanics by David J. Griffiths , 2018 .

[15]  J. Fajans,et al.  Axial to transverse energy mixing dynamics in octupole-based magnetostatic antihydrogen traps , 2018 .

[16]  C. J. Baker,et al.  Characterization of the 1S–2S transition in antihydrogen , 2018, Nature.

[17]  A. Fontana,et al.  AEgIS at ELENA: outlook for physics with a pulsed cold antihydrogen beam , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  C. J. Baker,et al.  Antihydrogen accumulation for fundamental symmetry tests , 2017, Nature Communications.

[19]  C. J. Baker,et al.  Observation of the hyperfine spectrum of antihydrogen , 2017, Nature.

[20]  C. J. Baker,et al.  Observation of the 1S–2S transition in trapped antihydrogen , 2016, Nature.

[21]  Hiroyuki Yamada,et al.  Buffer-gas cooling of antiprotonic helium to 1.5 to 1.7 K, and antiproton-to–electron mass ratio , 2016, Science.

[22]  F. Retière,et al.  Design of a Radial TPC for Antihydrogen Gravity Measurement with ALPHA-g , 2016, 1609.06656.

[23]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[24]  A. Zhmoginov,et al.  An improved limit on the charge of antihydrogen from stochastic acceleration , 2016, Nature.

[25]  J. Wurtele,et al.  In situ electromagnetic field diagnostics with an electron plasma in a Penning–Malmberg trap , 2014, 1405.0692.

[26]  A. Zhmoginov,et al.  Antimatter interferometry for gravity measurements. , 2013, Physical review letters.

[27]  A. Little,et al.  Description and first application of a new technique to measure the gravitational mass of antihydrogen , 2013, Nature Communications.

[28]  J. Wurtele,et al.  Resonant quantum transitions in trapped antihydrogen atoms , 2012, Nature.

[29]  S. Jonsell,et al.  Helium–antihydrogen scattering at low energies , 2012 .

[30]  D. Hajdukovic Quantum vacuum and virtual gravitational dipoles: the solution to the dark energy problem? , 2012, 1201.4594.

[31]  A. Benoit-Lévy,et al.  Introducing the Dirac-Milne universe , 2011, 1110.3054.

[32]  M. Villata CPT symmetry and antimatter gravity in general relativity , 2011, 1103.4937.

[33]  J. Wurtele,et al.  Evaporative cooling of antiprotons to cryogenic temperatures. , 2010, Physical review letters.

[34]  H. Fenker,et al.  BoNus : Development and use of a radial TPC using cylindrical GEMs , 2008 .

[35]  The Ceres Collaboration The CERES/NA45 Radial Drift Time Projection Chamber , 2008, 0802.1443.

[36]  M. Wolter,et al.  TMVA - Toolkit for Multivariate Data Analysis , 2007, physics/0703039.

[37]  J. Fajans,et al.  A magnetic trap for antihydrogen confinement , 2006 .

[38]  F. Robicheaux,et al.  Radiative cascade of highly excited hydrogen atoms in strong magnetic fields (10 pages) , 2006 .

[39]  A. Fontana,et al.  Production and detection of cold antihydrogen atoms , 2002, Nature.

[40]  A. Ealet,et al.  Tests of the Equivalence Principle with neutral kaons , 1999, hep-ex/9903005.

[41]  M. Charlton,et al.  Stored positrons for antihydrogen production , 1997 .

[42]  C. L. Cesar Trapping and spectroscopy of hydrogen , 1997 .

[43]  J. Tuyn,et al.  The Antiproton Decelerator: AD , 1997, Proceedings of the 1997 Particle Accelerator Conference (Cat. No.97CH36167).

[44]  Wurtele,et al.  Asymmetric stable equilibria of non-neutral plasmas. , 1992, Physical Review Letters.

[45]  A. Hyatt,et al.  Parallel energy analyzer for pure electron plasma devices , 1992 .

[46]  M. Nieto,et al.  The arguments against ``antigravity'' and the gravitational acceleration of antimatter , 1991 .

[47]  Richard J. Hughes,et al.  Constraints on the gravitational properties of antiprotons and positrons from cyclotron-frequency measurements. , 1991, Physical review letters.

[48]  F. Witteborn,et al.  Experiments to determine the Force of Gravity on Single Electrons and Positrons , 1968, Nature.

[49]  P. Blackett The Positive Electron , 1933, Nature.

[50]  P. Dirac The quantum theory of the electron , 1928 .

[51]  C. J. Baker,et al.  Enhanced Control and Reproducibility of Non-Neutral Plasmas. , 2018, Physical Review Letters.

[52]  M. Charlton,et al.  Manipulation of the magnetron orbit of a positron cloud in a Penning trap , 2013 .

[53]  J. Wurtele,et al.  Trapped antihydrogen , 2010, Nature.

[54]  F. Dyson,et al.  A Determination of the Deflection of Light by the Sun's Gravitational Field, from Observations Made at the Total Eclipse of May 29, 1919 , 1920 .