Luminescence of dye molecules on oxidized silicon and fluorescence interference contrast microscopy of biomembranes

The luminescence of dye molecules depends on their position in a layered optical system. Conversely, the luminescence can be applied to measure the position of dye molecules above an interface. We formulate the electromagnetic theory of stationary fluorescence in a layered optical system—of light absorption, light detection, and fluorescence lifetime—computing the angular dependence of dipole interaction with all plane waves by a classical Sommerfeld approach. The theory is checked by experiments with stained lipid membranes on silicon with 256 terraces of silicon dioxide. We apply the electromagnetic theory to fluorescence micrographs of living cells on oxidized silicon chips and evaluate distances between the cell membrane and the substrate in a range of 1–150 nm.

[1]  R. Cherry,et al.  Optical properties of black lecithin films. , 1969, Journal of molecular biology.

[2]  P. Fromherz,et al.  Fluorescent Dye in Soap Lamella as a Probe of the Electrical Potential , 1984 .

[3]  R. Silbey,et al.  Fluorescence and energy transfer near interfaces: The complete and quantitative description of the Eu+3/mirror systems , 1975 .

[4]  C Bechinger,et al.  Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy. , 1999, Biophysical journal.

[5]  G. Jellison,et al.  Optical constants for silicon at 300 and 10 K determined from 1.64 to 4.73 eV by ellipsometry , 1982 .

[6]  W M Reichert,et al.  Application of total internal reflection fluorescence microscopy to study cell adhesion to biomaterials. , 1998, Biomaterials.

[7]  L. Loew Potentiometric dyes: Imaging electrical activity of cell membranes , 1996 .

[8]  Dennis G. Hall,et al.  Enhancement and inhibition of electromagnetic radiation in plane-layered media. I.Plane-wave spectrum approach to modeling classical effects , 1997 .

[9]  K. Drexhage,et al.  IV Interaction of Light with Monomolecular Dye Layers , 1974 .

[10]  H. Weyl,et al.  Ausbreitung elektromagnetischer Wellen über einem ebenen Leiter , 1919 .

[11]  W. Lukosz,et al.  Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power , 1977 .

[12]  P. Fromherz,et al.  Fluorescence interference-contrast microscopy of cell adhesion on oxidized silicon , 1997 .

[13]  Vincent J. Schaefer,et al.  Activities of Urease and Pepsin Monolayers , 1938 .

[14]  P. Fromherz,et al.  Fluorescence Interferometry of Neuronal Cell Adhesion on Microstructured Silicon , 1998 .

[15]  A. S. G. Curtis,et al.  THE MECHANISM OF ADHESION OF CELLS TO GLASS , 1964, The Journal of cell biology.

[16]  Peter Fromherz,et al.  Membrane transistor with giant lipid vesicle touching a silicon chip , 1999 .

[17]  P. Fromherz,et al.  Orientation of Hemicyanine Dye in Lipid Membrane Measured by Fluorescence Interferometry on a Silicon Chip , 2001 .

[18]  Hans Kuhn,et al.  Classical Aspects of Energy Transfer in Molecular Systems , 1970 .

[19]  Peter Fromherz,et al.  FREQUENCY DEPENDENT SIGNAL TRANSFER IN NEURON TRANSISTORS , 1997 .

[20]  D. Gingell,et al.  Interference reflection microscopy. A quantitative theory for image interpretation and its application to cell-substratum separation measurement. , 1979, Biophysical journal.

[21]  C H Wang,et al.  Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. , 1974, Biochemistry.

[22]  P. Fromherz,et al.  No correlation of focal contacts and close adhesion by comparing GFP-vinculin and fluorescence interference of DiI , 2001, European Biophysics Journal.

[23]  A. Sommerfeld Über die Ausbreitung der Wellen in der drahtlosen Telegraphie , 1909 .

[24]  Feder,et al.  Fluctuation analysis of tension-controlled undulation forces between giant vesicles and solid substrates. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  P. Fromherz,et al.  Energy transfer between fluorescent dyes spaced by multilayers of cadmium salts of fatty acids , 1988 .

[26]  P. Fromherz Instrumentation for handling monomolecular films at an air–water interface , 1975 .

[27]  Ronald R. Chance,et al.  Comments on the classical theory of energy transfer , 1975 .

[28]  R. Redmond,et al.  Photophysical properties of 3,3'-dialkylthiacarbocyanine dyes in organized media: unilamellar liposomes and thin polymer films. , 1993, Biochimica et biophysica acta.

[29]  Irving Langmuir,et al.  Built-Up Films of Barium Stearate and Their Optical Properties , 1937 .

[30]  Armin Lambacher,et al.  Fluorescence interference-contrast microscopy on oxidized silicon using a monomolecular dye layer , 1996 .

[31]  G. Fuhr,et al.  A time-resolved total internal reflection aqueous fluorescence (TIRAF) microscope for the investigation of cell adhesion dynamics , 1999 .

[32]  J Enderlein,et al.  A theoretical investigation of single-molecule fluorescence detection on thin metallic layers. , 2000, Biophysical journal.

[33]  J. Mertz Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description , 2000 .

[34]  Stavola,et al.  Electron-hole pair excitation in semiconductors via energy transfer from an external sensitizer. , 1985, Physical review. B, Condensed matter.

[35]  K. Drexhage,et al.  Controlled Transfer of Excitation Energy Through Thin Layers , 1967 .

[36]  Ronald R. Chance,et al.  Lifetime of an emitting molecule near a partially reflecting surface , 1974 .

[37]  J. Sondermann Darstellung oberflächenaktiver Polymethincyanin‐Farbstoffe mit langen N‐Alkyl‐Ketten , 1971 .