Design of a Compact GaN MMIC Doherty Power Amplifier and System Level Analysis With X-Parameters for 5G Communications

This paper presents a monolithic microwave integrated circuit Doherty power amplifier (DPA) operating at sub-6 GHz for 5G communication applications by a 0.25-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> gallium nitride high-electron mobility transistor process. A compact impedance inverter and output matching of the DPA are achieved using a transmission line network and shunt capacitors. Also, the size ratio of power cells in the main and auxiliary amplifiers is optimized for a high efficiency at output power backoff (OPBO). The measured peak output power (<inline-formula> <tex-math notation="LaTeX">${P}_{\text {out}}$ </tex-math></inline-formula>) and the 1-dB compression point (<inline-formula> <tex-math notation="LaTeX">${P}_{{1\,\text {dB}}}$ </tex-math></inline-formula>) are 38.7 and 32.1 dBm, respectively, at 5.9 GHz. The power-added efficiency at 6-dB OPBO is up to 49.5%. Without digital predistortion (DPD), the DPA can deliver an average <inline-formula> <tex-math notation="LaTeX">${P}_{\text {out}}$ </tex-math></inline-formula> of 23.5 dBm with error vector magnitude (EVM) <−28 dB and 21.5 dBm with EVM <−32 dB for 64-quadrature amplitude modulation (QAM) and 256-QAM signals, respectively. The measured X-parameters are employed to further investigate the DPA nonlinear characteristics and verify the accuracy of conventionally used power amplifier characterization/measurement methods for system-level design and testing applications. The simulated results based on the X-parameters also indicate that the average output power can be enhanced up to 25.7 dBm with DPD for 256-QAM.

[1]  J. Papapolymerou,et al.  Reactively matched 3-stage C-X-Ku band GaN MMIC power amplifier , 2017, 2017 12th European Microwave Integrated Circuits Conference (EuMIC).

[2]  A. Cidronali,et al.  Investigation of X-parameters modeling for accurate envelope tracking power amplifier system simulations , 2013, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT).

[3]  Jangheon Kim,et al.  Analysis of a Fully Matched Saturated Doherty Amplifier With Excellent Efficiency , 2008, IEEE Transactions on Microwave Theory and Techniques.

[4]  Torben Larsen,et al.  X-parameter-based modelling of polar modulated power amplifiers , 2013 .

[5]  Franco Giannini,et al.  High-Efficiency 7 GHz Doherty GaN MMIC Power Amplifiers for Microwave Backhaul Radio Links , 2013, IEEE Transactions on Electron Devices.

[6]  Jangheon Kim,et al.  Efficiency Enhancement of Doherty Amplifier Through Mitigation of the Knee Voltage Effect , 2011, IEEE Transactions on Microwave Theory and Techniques.

[7]  Rolf H. Jansen,et al.  Broadband Doherty Power Amplifier via Real Frequency Technique , 2012, IEEE Transactions on Microwave Theory and Techniques.

[8]  D. Kuylenstierna,et al.  A Wideband and Compact GaN MMIC Doherty Amplifier for Microwave Link Applications , 2013, IEEE Transactions on Microwave Theory and Techniques.

[9]  S.E. Gunnarsson,et al.  Lumped-element quadrature power splitters using mixed right/left-handed transmission lines , 2005, IEEE Transactions on Microwave Theory and Techniques.

[10]  Bumman Kim,et al.  Linearization of CMOS Cascode Power Amplifiers Through Adaptive Bias Control , 2013, IEEE Transactions on Microwave Theory and Techniques.

[11]  J. Verspecht,et al.  X-Parameter Measurement and Simulation of a GSM Handset Amplifier , 2008, 2008 European Microwave Integrated Circuit Conference.

[12]  Patrick Roblin,et al.  Simulation and measurement-based X-parameter models for power amplifiers with envelope tracking , 2013, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT).

[13]  F. Raab,et al.  Power amplifiers and transmitters for RF and microwave , 2002 .

[14]  L.C.N. de Vreede,et al.  A High-Efficiency 100-W GaN Three-Way Doherty Amplifier for Base-Station Applications , 2008, IEEE Transactions on Microwave Theory and Techniques.

[15]  Marco Pirola,et al.  A 4-W Doherty Power Amplifier in GaN MMIC Technology for 15-GHz Applications , 2017, IEEE Microwave and Wireless Components Letters.

[16]  John Wood,et al.  Investigation of X-parameters measurements on a 100 W Doherty power amplifier , 2010, 75th ARFTG Microwave Measurement Conference.

[17]  G. Ghione,et al.  3–3.6-GHz Wideband GaN Doherty Power Amplifier Exploiting Output Compensation Stages , 2012, IEEE Transactions on Microwave Theory and Techniques.

[18]  Zoya Popovic,et al.  A 4.2-W 10-GHz GaN MMIC Doherty Power Amplifier , 2015, 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[19]  V. Sudha,et al.  PAPR reduction of OFDM system using PTS method with different modulation techniques , 2014, 2014 International Conference on Electronics and Communication Systems (ICECS).

[20]  A. Z. Markos,et al.  Frequency Response Analysis and Bandwidth Extension of the Doherty Amplifier , 2011, IEEE Transactions on Microwave Theory and Techniques.

[21]  Dong-Wook Kim,et al.  An Output Matching Technique for a GaN Distributed Power Amplifier MMIC Using Tapered Drain Shunt Capacitors , 2015, IEEE Microwave and Wireless Components Letters.

[22]  Marc Camiade,et al.  Single and dual input packaged 5.5–6.5GHz, 20W, Quasi-MMIC GaN-HEMT Doherty Power Amplifier , 2017, 2017 IEEE MTT-S International Microwave Symposium (IMS).

[23]  Christian Fager,et al.  A GaN MMIC Modified Doherty PA With Large Bandwidth and Reconfigurable Efficiency , 2014, IEEE Transactions on Microwave Theory and Techniques.

[24]  Zhi Ding,et al.  A Linear Programming Based Tone Injection Algorithm for PAPR Reduction of OFDM and Linearly Precoded Systems , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[25]  Youngwoo Kwon,et al.  A Broadband GaN pHEMT Power Amplifier Using Non-Foster Matching , 2015, IEEE Transactions on Microwave Theory and Techniques.

[26]  S. Hsu,et al.  AlGaN/GaN HEMTs on Silicon With Hybrid Schottky–Ohmic Drain for RF Applications , 2016, IEEE Transactions on Electron Devices.

[27]  P. Asbeck,et al.  An extended Doherty amplifier with high efficiency over a wide power range , 2001, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157).

[28]  P. Colantonio,et al.  Design of a Concurrent Dual-Band 1.8–2.4-GHz GaN-HEMT Doherty Power Amplifier , 2012, IEEE Transactions on Microwave Theory and Techniques.