Loss-of-Function Mutations in APPL1 in Familial Diabetes Mellitus.

[1]  Feng Dong,et al.  APPL1 Potentiates Insulin Sensitivity by Facilitating the Binding of IRS1/2 to the Insulin Receptor , 2014, Cell reports.

[2]  T. Baumgart,et al.  Mutations in BIN1 Associated with Centronuclear Myopathy Disrupt Membrane Remodeling by Affecting Protein Density and Oligomerization , 2014, PloS one.

[3]  V. Schwitzgebel Many faces of monogenic diabetes , 2014, Journal of diabetes investigation.

[4]  Tommaso Mazza,et al.  A solid quality-control analysis of AB SOLiD short-read sequencing data , 2013, Briefings Bioinform..

[5]  Michael Krawczak,et al.  Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease , 2013, Human Genetics.

[6]  W. Jia,et al.  Deficiency of APPL1 in mice impairs glucose-stimulated insulin secretion through inhibition of pancreatic beta cell mitochondrial function , 2013, Diabetologia.

[7]  Hetal S. Shah,et al.  Joint effect of insulin signaling genes on insulin secretion and glucose homeostasis. , 2013, The Journal of clinical endocrinology and metabolism.

[8]  Tommaso Mazza,et al.  Congruency in the prediction of pathogenic missense mutations: state-of-the-art web-based tools , 2013, Briefings Bioinform..

[9]  Vinzenz M Unger,et al.  Membrane curvature and its generation by BAR proteins. , 2012, Trends in biochemical sciences.

[10]  I. Fajardy,et al.  Whole-Exome Sequencing and High Throughput Genotyping Identified KCNJ11 as the Thirteenth MODY Gene , 2012, PloS one.

[11]  W. Han Dual functions of adaptor protein, phosphotyrosine interaction, PH domain and leucine zipper containing 1 (APPL1) in insulin signaling and insulin secretion , 2012, Proceedings of the National Academy of Sciences.

[12]  G. Sesti,et al.  The mammalian tribbles homolog TRIB3, glucose homeostasis, and cardiovascular diseases. , 2012, Endocrine reviews.

[13]  J. Shendure,et al.  Exome sequencing as a tool for Mendelian disease gene discovery , 2011, Nature Reviews Genetics.

[14]  G. Bell,et al.  MODY: history, genetics, pathophysiology, and clinical decision making. , 2011, Diabetes care.

[15]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[16]  P. Lénárt,et al.  APPL Proteins FRET at the BAR: Direct Observation of APPL1 and APPL2 BAR Domain-Mediated Interactions on Cell Membranes Using FRET Microscopy , 2010, PloS one.

[17]  N. Mochizuki,et al.  Structural characteristics of BAR domain superfamily to sculpt the membrane. , 2010, Seminars in cell & developmental biology.

[18]  S. Suetsugu,et al.  Subcellular membrane curvature mediated by the BAR domain superfamily proteins. , 2010, Seminars in cell & developmental biology.

[19]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[20]  T. Hansen,et al.  Insulin Gene Mutations Resulting in Early-Onset Diabetes: Marked Differences in Clinical Presentation, Metabolic Status, and Pathogenic Effect Through Endoplasmic Reticulum Retention , 2009, Diabetes.

[21]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[22]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[23]  E. Kraegen,et al.  APPL1 potentiates insulin-mediated inhibition of hepatic glucose production and alleviates diabetes via Akt activation in mice. , 2009, Cell metabolism.

[24]  Lily Q. Dong,et al.  APPL1: role in adiponectin signaling and beyond. , 2009, American journal of physiology. Endocrinology and metabolism.

[25]  B. Shields,et al.  Insulin Mutation Screening in 1,044 Patients With Diabetes , 2008, Diabetes.

[26]  P. Froguel,et al.  Monogenic diabetes in the young, pharmacogenetics and relevance to multifactorial forms of type 2 diabetes. , 2008, Endocrine reviews.

[27]  W. Mobley,et al.  Membrane Targeting by APPL1 and APPL2: Dynamic Scaffolds that Oligomerize and Bind Phosphoinositides , 2007, Traffic.

[28]  Stephen O’Riordana,et al.  Insulin mutation screening in 1 , 044 patients with diabetes : mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood , 2008 .

[29]  M. Czech,et al.  The Interaction of Akt with APPL1 Is Required for Insulin-stimulated Glut4 Translocation* , 2007, Journal of Biological Chemistry.

[30]  U. Boggi,et al.  The endoplasmic reticulum in pancreatic beta cells of type 2 diabetes patients , 2007, Diabetologia.

[31]  L. Tong,et al.  Crystal structures of the BAR-PH and PTB domains of human APPL1. , 2007, Structure.

[32]  Colin Mathers,et al.  The burden of mortality attributable to diabetes: realistic estimates for the year 2000. , 2005, Diabetes care.

[33]  B. Peter,et al.  BAR Domains as Sensors of Membrane Curvature: The Amphiphysin BAR Structure , 2004, Science.

[34]  A. Krolewski,et al.  Mutation screening of the neurogenin-3 gene in autosomal dominant diabetes. , 2001, Journal of Clinical Endocrinology and Metabolism.

[35]  Erica A Golemis,et al.  Identification of a chromosome 3p14.3-21.1 gene, APPL, encoding an adaptor molecule that interacts with the oncoprotein-serine/threonine kinase AKT2 , 1999, Oncogene.

[36]  A. Krolewski,et al.  Phenotypic characteristics of early-onset autosomal-dominant type 2 diabetes unlinked to known maturity-onset diabetes of the young (MODY) genes. , 1999, Diabetes care.