The Mathematics of Infectious Diseases

Many models for the spread of infectious diseases in populations have been analyzed mathematically and applied to specific diseases. Threshold theorems involving the basic reproduction number $R_{0}$, the contact number $\sigma$, and the replacement number $R$ are reviewed for the classic SIR epidemic and endemic models. Similar results with new expressions for $R_{0}$ are obtained for MSEIR and SEIR endemic models with either continuous age or age groups. Values of $R_{0}$ and $\sigma$ are estimated for various diseases including measles in Niger and pertussis in the United States. Previous models with age structure, heterogeneity, and spatial structure are surveyed.

[1]  F R Adler,et al.  The effects of averaging on the basic reproduction ratio. , 1992, Mathematical biosciences.

[2]  D Greenhalgh,et al.  Analytical threshold and stability results on age-structured epidemic models with vaccination. , 1988, Theoretical Population Biology.

[3]  Herbert W. Hethcote,et al.  Dynamic models of infectious diseases as regulators of population sizes , 1992, Journal of mathematical biology.

[4]  W. Wheeler,et al.  Control of Communicable Diseases in Man. , 1961 .

[5]  H. Hethcote PERIODICITY AND STABILITY IN EPIDEMIC MODELS: A SURVEY , 1981 .

[6]  M. Iannelli,et al.  Analytical and numerical results for the age-structured S-I-S epidemic model with mixed inter-intracohort transmission , 1992 .

[7]  Mimmo Iannelli,et al.  Endemic thresholds and stability in a class of age-structured epidemics , 1988 .

[8]  H. Hethcote Three Basic Epidemiological Models , 1989 .

[9]  Roy M. Anderson,et al.  Possible demographic consequences of HIV/AIDS epidemics. I. assuming HIV infection always leads to AIDS , 1988 .

[10]  L. A. Rvachev,et al.  A mathematical model for the global spread of influenza , 1985 .

[11]  V. Capasso Mathematical Structures of Epidemic Systems , 1993, Lecture Notes in Biomathematics.

[12]  S. Busenberg,et al.  Analysis of a disease transmission model in a population with varying size , 1990, Journal of mathematical biology.

[13]  O. Diekmann Mathematical Epidemiology of Infectious Diseases , 1996 .

[14]  H. Hethcote,et al.  Disease transmission models with density-dependent demographics , 1992, Journal of mathematical biology.

[15]  K Dietz,et al.  Epidemiologic interference of virus populations , 1979, Journal of mathematical biology.

[16]  H. Hethcote,et al.  Simulations of pertussis epidemiology in the United States: effects of adult booster vaccinations. , 1999, Mathematical biosciences.

[17]  Norman T. J. Bailey,et al.  The Mathematical Theory of Infectious Diseases , 1975 .

[18]  R. May,et al.  Population Biology of Infectious Diseases , 1982, Dahlem Workshop Reports.

[19]  Odo Diekmann,et al.  The velocity of spatial population expansion , 1990 .

[20]  D Mollison,et al.  Dependence of epidemic and population velocities on basic parameters. , 1991, Mathematical biosciences.

[21]  Stavros Busenberg,et al.  VERTICALLY TRANSMITTED DISEASES††This research was supported in part by the National Science Foundation under Grant MCS 7903497. , 1982 .

[22]  A. J. Lotka The Stability of the Normal Age Distribution. , 1922, Proceedings of the National Academy of Sciences of the United States of America.

[23]  C. Castillo-Chavez Mathematical and Statistical Approaches to Aids Epidemiology , 1989 .

[24]  Johannes Müller,et al.  Optimal Vaccination Patterns in Age-Structured Populations , 1998, SIAM J. Appl. Math..

[25]  Randy Shilts,et al.  And the Band Played On , 1987 .

[26]  S. Harrison,et al.  Long-COVID Symptoms in Individuals Infected with Different SARS-CoV-2 Variants of Concern: A Systematic Review of the Literature , 2022, Viruses.

[27]  S. Levin,et al.  A simulation model of the population dynamics and evolution of myxomatosis. , 1990 .

[28]  Y. Iwasa,et al.  Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models , 1986, Journal of mathematical biology.

[29]  J. Hyman,et al.  Threshold conditions for the spread of the HIV infection in age-structured populations of homosexual men. , 1994, Journal of theoretical biology.

[30]  Macfarlane Burnet,et al.  Natural history of infectious disease , 1953 .

[31]  Valerie Isham,et al.  Models for Infectious Human Diseases: Contents , 1996 .

[32]  Pim Martens HOW WILL CLIMATE CHANGE AFFECT HUMAN HEALTH , 1999 .

[33]  P. Kaye Infectious diseases of humans: Dynamics and control , 1993 .

[34]  John A. Jacquez,et al.  Reproduction numbers and the stability of equilibria of SI models for heterogeneous populations , 1992 .

[35]  R. Webster,et al.  Influenza: an emerging disease. , 1998, Emerging infectious diseases.

[36]  Valerie Isham,et al.  Mathematical and computer modelling reports: Mathematical modelling of the transmission dynamics of HIV infection and AIDS: a review , 1989 .

[37]  Horst R. Thieme,et al.  Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations. , 1979 .

[38]  R. May,et al.  Parasite—host coevolution , 1990, Parasitology.

[39]  B T Grenfell,et al.  Pertussis in England and Wales: an investigation of transmission dynamics and control by mass vaccination , 1989, Proceedings of the Royal Society of London. B. Biological Sciences.

[40]  H. Hull,et al.  Paralytic poliomyelitis: seasoned strategies, disappearing disease , 1994, The Lancet.

[41]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[42]  M E Halloran,et al.  Epidemiologic effects of vaccines with complex direct effects in an age-structured population. , 1994, Mathematical biosciences.

[43]  Horst R. Thieme,et al.  Global behavior of an age-structured epidemic model , 1991 .

[44]  Rick Durrett,et al.  Stochastic Spatial Models , 1999, SIAM Rev..

[45]  K Dietz,et al.  Evaluation of age-specific vaccination strategies. , 1984, Theoretical population biology.

[46]  D. E. Shalala Bioterrorism: how prepared are we? , 1999, Emerging infectious diseases.

[47]  H J Bremermann,et al.  A competitive exclusion principle for pathogen virulence , 1989, Journal of mathematical biology.

[48]  D. Schenzle An age-structured model of pre- and post-vaccination measles transmission. , 1984, IMA journal of mathematics applied in medicine and biology.

[49]  J. Hyman,et al.  An intuitive formulation for the reproductive number for the spread of diseases in heterogeneous populations. , 2000, Mathematical biosciences.

[50]  H. A. Lauwerier,et al.  Mathematical models of epidemics , 1981 .

[51]  H. Hethcote Qualitative analyses of communicable disease models , 1976 .

[52]  R. May,et al.  Population biology of infectious diseases: Part II , 1979, Nature.

[53]  J. Frauenthal Mathematical Modeling in Epidemiology , 1980 .

[54]  Michael Y. Li,et al.  Global stability for the SEIR model in epidemiology. , 1995, Mathematical biosciences.

[55]  B. Bolker,et al.  Chaos and biological complexity in measles dynamics , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[56]  S. Levin,et al.  Dynamical behavior of epidemiological models with nonlinear incidence rates , 1987, Journal of mathematical biology.

[57]  N. Bailey,et al.  The Biomathematics of Malaria , 1984 .

[58]  Odo Diekmann,et al.  How does transmission of infection depend on population size , 1995 .

[59]  M E Halloran,et al.  Theoretical epidemiologic and morbidity effects of routine varicella immunization of preschool children in the United States. , 1994, American journal of epidemiology.

[60]  Noni E. MacDonald,et al.  Recommended childhood immunization schedule--United States, January-December 1997. American Academy of Pediatrics Committee on Infectious Diseases. , 1997, Pediatrics.

[61]  F. Brauer,et al.  Models for the spread of universally fatal diseases. , 1990, Journal of mathematical biology.

[62]  H. Hethcote Models for Infectious Human Diseases: Modeling heterogeneous mixing in infectious disease dynamics , 1996 .

[63]  D Greenhalgh,et al.  Vaccination campaigns for common childhood diseases. , 1990, Mathematical biosciences.

[64]  K Dietz,et al.  Density-dependence in parasite transmission dynamics. , 1988, Parasitology today.

[65]  M. Bartlett,et al.  Stochastic Population Models in Ecology and Epidemiology. , 1961 .

[66]  V. Andreasen,et al.  Disease regulation of age-structured host populations. , 1989, Theoretical population biology.

[67]  R M May,et al.  A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS. , 1986, IMA journal of mathematics applied in medicine and biology.

[68]  R. Rosatte,et al.  Update: raccoon rabies epizootic--United States and Canada, 1999. , 2000, MMWR. Morbidity and mortality weekly report.

[69]  I. Longini,et al.  Role of the primary infection in epidemics of HIV infection in gay cohorts. , 1995, Journal of acquired immune deficiency syndromes.

[70]  J. Yorke,et al.  Recurrent outbreaks of measles, chickenpox and mumps. II. Systematic differences in contact rates and stochastic effects. , 1973, American journal of epidemiology.

[71]  C M Kribs-Zaleta Core recruitment effects in SIS models with constant total populations. , 1999, Mathematical biosciences.

[72]  J. Yorke,et al.  Gonorrhea Transmission Dynamics and Control , 1984 .

[73]  K. Dietz THE FIRST EPIDEMIC MODEL: A HISTORICAL NOTE ON P.D. EN'KO , 1988 .

[74]  C. Kribs-Zaleta,et al.  Structured models for heterosexual disease transmission. , 1999, Mathematical biosciences.

[75]  J. Yorke,et al.  Recurrent outbreaks of measles, chickenpox and mumps. I. Seasonal variation in contact rates. , 1973, American journal of epidemiology.

[76]  H. Hethcote,et al.  Modeling HIV Transmission and AIDS in the United States , 1992 .

[77]  J. Stulc,et al.  The coming plague. , 1997, The Journal of the Kentucky Medical Association.

[78]  H. Hethcote,et al.  Some epidemiological models with nonlinear incidence , 1991, Journal of mathematical biology.

[79]  Measles outbreak, Netherlands. , 2000, Releve epidemiologique hebdomadaire.

[80]  C. Castillo-Chavez,et al.  Like-with-like preference and sexual mixing models. , 1989, Mathematical biosciences.

[81]  J. Hyman,et al.  Using mathematical models to understand the AIDS epidemic , 1988 .

[82]  J. Plank,et al.  Plant Diseases: Epidemics and Control , 1964 .

[83]  G. Webb Theory of Nonlinear Age-Dependent Population Dynamics , 1985 .

[84]  A. M'Kendrick Applications of Mathematics to Medical Problems , 1925, Proceedings of the Edinburgh Mathematical Society.

[85]  F. C. Hoppensteadt Mathematical theories of populations : demographics, genetics and epidemics , 1975 .

[86]  M. Bulmer Stochastic Population Models in Ecology and Epidemiology , 1961 .

[87]  A. Evans,et al.  Viral Infections of Humans: Epidemiology and Control , 1989 .

[88]  Carlos Castillo-Chavez,et al.  Stability and bifurcation for a multiple-group model for the dynamics of HIV/AIDS transmission , 1992 .

[89]  Johan A. J. Metz,et al.  Velocities of epidemic spread , 1995 .

[90]  I. Nåsell Hybrid Models of Tropical Infections , 1985, Lecture Notes in Biomathematics.

[91]  Klaus Dietz,et al.  Epidemics and Rumours: A Survey , 1967 .

[92]  Global measles control and regional elimination, 1998-1999. , 1999, MMWR. Morbidity and mortality weekly report.

[93]  N M Ferguson,et al.  Mass vaccination to control chickenpox: the influence of zoster. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[94]  Lisa Sattenspiel,et al.  Modeling and analyzing HIV transmission: the effect of contact patterns , 1988 .

[95]  Klaus Dietz,et al.  Mathematical Models for Infectious Disease Statistics , 1985 .

[96]  S. Busenberg,et al.  A general solution of the problem of mixing of subpopulations and its application to risk- and age-structured epidemic models for the spread of AIDS. , 1991, IMA journal of mathematics applied in medicine and biology.

[97]  Ten great public health achievements--United States, 1900-1999. , 1999, MMWR. Morbidity and mortality weekly report.

[98]  K. Hadeler,et al.  Demography and epidemics. , 1990, Mathematical biosciences.

[99]  S. Levin,et al.  Epidemiological models with age structure, proportionate mixing, and cross-immunity , 1989, Journal of mathematical biology.

[100]  Roy M. Anderson,et al.  The Population Dynamics of Microparasites and Their Invertebrate Hosts , 1981 .

[101]  W. O. Kermack,et al.  A contribution to the mathematical theory of epidemics , 1927 .

[102]  Daryl J. Daley,et al.  Epidemic Modelling: An Introduction , 1999 .

[103]  H. Hethcote A Thousand and One Epidemic Models , 1994 .

[104]  L. Olsen,et al.  Chaos versus noisy periodicity: alternative hypotheses for childhood epidemics. , 1990, Science.

[105]  H. Hethcote,et al.  Measles and rubella in the United States. , 1983, American journal of epidemiology.

[106]  A Pugliese,et al.  Population models for diseases with no recovery , 1990, Journal of mathematical biology.

[107]  H. Hethcote,et al.  Four SEI endemic models with periodicity and separatrices. , 1995, Mathematical biosciences.

[108]  L. Markowitz,et al.  Measles outbreaks in the United States, 1987 through 1990. , 1996, The Pediatric infectious disease journal.

[109]  Horst R. Thieme,et al.  Persistence under relaxed point-dissipativity (with application to an endemic model) , 1993 .

[110]  L. Allen,et al.  Comparison of deterministic and stochastic SIS and SIR models in discrete time. , 2000, Mathematical biosciences.

[111]  D. Tudor,et al.  An age-dependent epidemic model with application to measles , 1985 .

[112]  D Greenhalgh,et al.  Some threshold and stability results for epidemic models with a density-dependent death rate. , 1992, Theoretical population biology.

[113]  Jia Li,et al.  The Diierential Infectivity and Staged Progression Models for the Transmission of Hiv , 1998 .

[114]  Simon A. Levin,et al.  The dynamics of cocirculating influenza strains conferring partial cross-immunity , 1997, Journal of mathematical biology.

[115]  H R Thieme,et al.  Epidemic and demographic interaction in the spread of potentially fatal diseases in growing populations. , 1992, Mathematical biosciences.

[116]  N G Becker,et al.  Assessment of two-dose vaccination schedules: availability for vaccination and catch-up strategies. , 1995, Mathematical biosciences.

[117]  M. Li,et al.  Global dynamics of a SEIR model with varying total population size. , 1999, Mathematical Biosciences.

[118]  L Schlein Hunting Down the Last of the Poliovirus , 1998, Science.

[119]  Herbert W. Hethcote,et al.  Hopf bifurcation in models for pertussis epidemiology , 1999 .

[120]  M. El-Doma,et al.  Analysis of nonlinear integro-differential equations arising in age-dependent epidemic models , 1987 .

[121]  Horst R. Thieme,et al.  Global asymptotic stability in epidemic models , 1983 .

[122]  P. H. Gregory Plant Diseases: Epidemics and Control, J.E. van der Plank. Academic Press, New York and London (1963), xvi, + 349. Price £4 , 1965 .

[123]  Y Cha,et al.  Existence and uniqueness of endemic states for the age-structured S-I-R epidemic model. , 1998, Mathematical biosciences.

[124]  R M May,et al.  Vaccination against rubella and measles: quantitative investigations of different policies , 1983, Journal of Hygiene.

[125]  N G Becker,et al.  Waning immunity and its effects on vaccination schedules. , 1994, Mathematical biosciences.

[126]  Carlos Castillo-Chavez,et al.  Competitive Exclusion in Gonorrhea Models and Other Sexually Transmitted Diseases , 1996, SIAM J. Appl. Math..

[127]  P. Haggett,et al.  Atlas of Disease Distributions: Analytic Approaches to Epidemiological Data , 1989 .

[128]  H. Hethcote,et al.  An age-structured model for pertussis transmission. , 1997, Mathematical biosciences.

[129]  P. MANSON-BAHR,et al.  Natural History of Infectious Disease , 1953, Nature.

[130]  H. Hethcote,et al.  Population size dependent incidence in models for diseases without immunity , 1994, Journal of mathematical biology.

[131]  W. O. Kermack,et al.  Contributions to the mathematical theory of epidemics—I , 1991, Bulletin of mathematical biology.

[132]  J. Yorke,et al.  A Deterministic Model for Gonorrhea in a Nonhomogeneous Population , 1976 .

[133]  Herbert W. Hethcote,et al.  Optimal ages of vaccination for measles , 1988 .

[134]  D J Nokes,et al.  Dynamical complexity in age-structured models of the transmission of the measles virus: epidemiological implications at high levels of vaccine uptake. , 1996, Mathematical biosciences.

[135]  C. Castillo-Chavez,et al.  Density-dependent dynamics and superinfection in an epidemic model. , 1999, IMA journal of mathematics applied in medicine and biology.

[136]  Samuel L. Groseclose,et al.  Summary of Notifiable Diseases, United States. , 1997 .

[137]  Herbert W. Hethcote,et al.  Epidemiological models for heterogeneous populations: proportionate mixing, parameter estimation, and immunization programs , 1987 .

[138]  Herbert W. Hethcote,et al.  Modeling the effects of varicella vaccination programs on the incidence of chickenpox and shingles , 1999, Bulletin of mathematical biology.

[139]  Gustaf Gripenberg,et al.  On a nonlinear integral equation modelling an epidemic in an age-structured population. , 1983 .

[140]  Lourdes Esteva,et al.  A model for dengue disease with variable human population , 1999, Journal of mathematical biology.

[141]  K. Wickwire Mathematical models for the control of pests and infectious diseases: a survey. , 1977, Theoretical population biology.

[142]  L. Allen Some discrete-time SI, SIR, and SIS epidemic models. , 1994, Mathematical biosciences.

[143]  R. Webster,et al.  The epidemiology of influenza. , 1977, Scientific American.

[144]  D. Mollison Epidemic models : their structure and relation to data , 1996 .

[145]  J. Velasco-Hernández,et al.  Competitive exclusion in a vector-host model for the dengue fever , 1997, Journal of mathematical biology.

[146]  James M. Hyman,et al.  The Effect of Social Mixing Patterns on the Spread of AIDS , 1989 .

[147]  J A Jacquez,et al.  The stochastic SI model with recruitment and deaths. I. Comparison with the closed SIS model. , 1993, Mathematical biosciences.

[148]  O. Diekmann,et al.  On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations , 1990, Journal of mathematical biology.

[149]  Jean-Pierre Gabriel,et al.  Stochastic Processes in Epidemic Theory , 1990 .

[150]  S. Levin,et al.  Periodicity in Epidemiological Models , 1989 .

[151]  Horst R. Thieme,et al.  Stability Change of the Endemic Equilibrium in Age-Structured Models for the Spread of S—I—R Type Infectious Diseases , 1991 .

[152]  A. Kendal,et al.  The next influenza pandemic: lessons from Hong Kong, 1997. , 1999, Emerging infectious diseases.

[153]  Carlos Castillo-Chavez,et al.  Competitive Exclusion and Coexistence of Multiple Strains in an SIS STD Model , 1999, SIAM J. Appl. Math..

[154]  Hal L. Smith,et al.  Asymptotically autonomous semiflows: chain recurrence and Lyapunov functions , 1995 .

[155]  H. Amann Ordinary Differential Equations , 1990 .

[156]  Update: influenza activity--United States. , 1986, MMWR. Morbidity and mortality weekly report.

[157]  Roy M. Anderson,et al.  Transmission dynamics of HIV infection , 1987, Nature.

[158]  J. Botella de Maglia,et al.  [Prevention of malaria]. , 1999, Revista clinica espanola.

[159]  Mimmo Iannelli,et al.  Mathematical Theory of Age-Structured Population Dynamics , 1995 .

[160]  D. Earn,et al.  A simple model for complex dynamical transitions in epidemics. , 2000, Science.

[161]  F. Fenner Smallpox and its eradication , 1988 .

[162]  H. Inaba,et al.  Threshold and stability results for an age-structured epidemic model , 1990, Journal of mathematical biology.

[163]  H. Hethcote,et al.  An immunization model for a heterogeneous population. , 1978, Theoretical population biology.

[164]  J. Kranz Epidemics of plant diseases: mathematical analysis and modeling , 1974 .

[165]  L. Esteva,et al.  Analysis of a dengue disease transmission model. , 1998, Mathematical biosciences.

[166]  Neil M. Ampel,et al.  The Coming Plague , 1997 .

[167]  Horst R. Thieme,et al.  Local Stability in Epidemic Models for Heterogeneous Populations , 1985 .

[168]  A. Dobson,et al.  Ecology of Infectious Diseases in Natural Populations , 1996 .

[169]  K Dietz,et al.  Proportionate mixing models for age-dependent infection transmission , 1985, Journal of mathematical biology.

[170]  Geoffrey L. Smith Viruses, Plagues, and History , 1998, Nature Medicine.

[171]  V. Andreasen,et al.  The effect of age-dependent host mortality on the dynamics of an endemic disease. , 1993, Mathematical biosciences.

[172]  Tomos Philipson,et al.  Modeling the AIDS Epidemic: Planning, Policy, and Prediction , 1994 .

[173]  P. Waltman Deterministic Threshold Models in the Theory of Epidemics , 1974, Lecture Notes in Biomathematics.

[174]  J Bongaarts,et al.  A model of the spread of HIV infection and the demographic impact of AIDS. , 1989, Statistics in medicine.

[175]  R. Anderson,et al.  The role of mathematical models in the study of HIV transmission and the epidemiology of AIDS. , 1988, Journal of acquired immune deficiency syndromes.

[176]  K. Dietz,et al.  The Incidence of Infectious Diseases under the Influence of Seasonal Fluctuations , 1976 .

[177]  William H. McNeill,et al.  Plagues and People , 1977 .