Target and Background Separation in Hyperspectral Imagery for Automatic Target Detection

In this paper, we propose a method for separating known targets of interests from the background in hyperspectral imagery. More precisely, we regard the given hyperspectral image (HSI) as being made up of the sum of low-rank background HSI and a sparse target HSI that contains the known targets based on a pre-learned target dictionary specified by the user. Based on the proposed method, two strategies are outlined and evaluated independently to realize the target detection on both synthetic and real experiments.

[1]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[2]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[3]  Nasser M. Nasrabadi,et al.  Regularized Spectral Matched Filter for Target Recognition in Hyperspectral Imagery , 2008, IEEE Signal Processing Letters.

[4]  Jean-Philippe Ovarlez,et al.  Sparse and Low-Rank Decomposition for Automatic Target Detection in Hyperspectral Imagery , 2017 .

[5]  Joana Frontera-Pons,et al.  False-alarm regulation for target detection in hyperspectral imaging , 2013, 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[6]  John Wright,et al.  Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization , 2009, NIPS.

[7]  S. Hook,et al.  The ASTER spectral library version 2.0 , 2009 .

[8]  Bo Du,et al.  A Sparse Representation-Based Binary Hypothesis Model for Target Detection in Hyperspectral Images , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[10]  Dimitris G. Manolakis,et al.  Is there a best hyperspectral detection algorithm? , 2009, Defense + Commercial Sensing.

[11]  Trac D. Tran,et al.  Sparse Representation for Target Detection in Hyperspectral Imagery , 2011, IEEE Journal of Selected Topics in Signal Processing.

[12]  Trac D. Tran,et al.  Simultaneous Joint Sparsity Model for Target Detection in Hyperspectral Imagery , 2011, IEEE Geoscience and Remote Sensing Letters.

[13]  Yacine Chitour,et al.  Generalized Robust Shrinkage Estimator and Its Application to STAP Detection Problem , 2013, IEEE Transactions on Signal Processing.

[14]  Alfred O. Hero,et al.  Robust Shrinkage Estimation of High-Dimensional Covariance Matrices , 2010, IEEE Transactions on Signal Processing.

[15]  Eric Truslow,et al.  Detection Algorithms in Hyperspectral Imaging Systems: An Overview of Practical Algorithms , 2014, IEEE Signal Processing Magazine.

[16]  Gary A. Shaw,et al.  Hyperspectral Image Processing for Automatic Target Detection Applications , 2003 .

[17]  Bo Du,et al.  A Low-Rank and Sparse Matrix Decomposition-Based Mahalanobis Distance Method for Hyperspectral Anomaly Detection , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Dimitris G. Manolakis,et al.  Detection algorithms for hyperspectral imaging applications , 2002, IEEE Signal Process. Mag..

[19]  G. Shaw,et al.  Signal processing for hyperspectral image exploitation , 2002, IEEE Signal Process. Mag..

[20]  S. J. Sutley,et al.  Mapping Advanced Argillic Alteration at Cuprite, Nevada, Using Imaging Spectroscopy , 2014 .

[21]  Loong Fah Cheong,et al.  Simultaneous sparsity-based binary hypothesis model for real hyperspectral target detection , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[22]  Alexander F. H. Goetz,et al.  Effects of spectrometer band pass, sampling, and signal‐to‐noise ratio on spectral identification using the Tetracorder algorithm , 2003 .

[23]  D. K. Peeler,et al.  The U , 2002 .

[24]  Yacine Chitour,et al.  Shrinkage covariance matrix estimator applied to STAP detection , 2014, 2014 IEEE Workshop on Statistical Signal Processing (SSP).

[25]  Louis L. Scharf,et al.  The CFAR adaptive subspace detector is a scale-invariant GLRT , 1999, IEEE Trans. Signal Process..

[26]  Loong Fah Cheong,et al.  Sparsity-Based cholesky factorization and its application to hyperspectral anomaly detection , 2017, 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[27]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[28]  E. J. Kelly An Adaptive Detection Algorithm , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[29]  Xiaodong Li,et al.  Stable Principal Component Pursuit , 2010, 2010 IEEE International Symposium on Information Theory.

[30]  Jocelyn Chanussot,et al.  Robust anomaly detection in Hyperspectral Imaging , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[31]  Konstantinos Kalpakis,et al.  Low-rank decomposition-based anomaly detection , 2013, Defense, Security, and Sensing.

[32]  Dimitris G. Manolakis,et al.  Comparative analysis of hyperspectral adaptive matched filter detectors , 2000, SPIE Defense + Commercial Sensing.