Measurement-device-independent entanglement and randomness estimation in quantum networks

Detection of entanglement in quantum networks consisting of many parties is one of the important steps towards building quantum communication and computation networks. We consider a scenario where the measurement devices used for this certification are uncharacterised. In this case, it is well known that by using quantum states as inputs for the measurement devices it is possible to detect any entangled state (a situation known as measurement device-independent entanglement witnessing). Here we go beyond entanglement detection and provide methods to estimate the amount of entanglement in a quantum network. We also consider the task of randomness certification and show that randomness can be certified in a variety of cases, including single-partite experiments or setups using only separable states.

[1]  Roger Colbeck,et al.  Quantum And Relativistic Protocols For Secure Multi-Party Computation , 2009, 0911.3814.

[2]  Eric G. Cavalcanti,et al.  Entanglement verification and steering when Alice and Bob cannot be trusted , 2012, 1210.6051.

[3]  Daniel Cavalcanti,et al.  All quantum states useful for teleportation are nonlocal resources , 2012, 1207.5485.

[4]  Leonid Gurvits,et al.  Classical complexity and quantum entanglement , 2004, J. Comput. Syst. Sci..

[5]  Lawrence M. Ioannou,et al.  Computational complexity of the quantum separability problem , 2006, Quantum Inf. Comput..

[6]  Giacomo Mauro D'Ariano,et al.  Classical randomness in quantum measurements , 2004, quant-ph/0408115.

[7]  Ping Xu,et al.  Implementation of a measurement-device-independent entanglement witness. , 2014, Physical review letters.

[8]  V. Scarani,et al.  More randomness from the same data , 2013, 1309.3894.

[9]  Francesco Buscemi,et al.  All entangled quantum states are nonlocal. , 2011, Physical review letters.

[10]  Nicolas Gisin,et al.  Entangled states cannot be classically simulated in generalized Bell experiments with quantum inputs , 2013 .

[11]  A. Acín,et al.  Bounding the set of quantum correlations. , 2006, Physical review letters.

[12]  Nicolas Brunner,et al.  Entanglement without hidden nonlocality , 2016, 1606.02215.

[13]  A. Doherty Entanglement and the shareability of quantum states , 2014 .

[14]  Popescu,et al.  Bell's Inequalities and Density Matrices: Revealing "Hidden" Nonlocality. , 1995, Physical review letters.

[15]  Zhu Cao,et al.  Loss-tolerant measurement-device-independent quantum random number generation , 2015, 1510.08960.

[16]  S. Pironio,et al.  Using complete measurement statistics for optimal device-independent randomness evaluation , 2013, 1309.3930.

[17]  Qiang Zhang,et al.  Experimental measurement-device-independent quantum random number generation , 2016, ArXiv.

[18]  Tamás Vértesi,et al.  Algorithmic Construction of Local Hidden Variable Models for Entangled Quantum States. , 2015, Physical review letters.

[19]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[20]  Elham Kashefi,et al.  Universal Blind Quantum Computation , 2008, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[21]  J. Barrett Nonsequential positive-operator-valued measurements on entangled mixed states do not always violate a Bell inequality , 2001, quant-ph/0107045.

[22]  M. Horodecki,et al.  Quantum entanglement , 2007, quant-ph/0702225.

[23]  Antonio Acín,et al.  Certified randomness in quantum physics , 2016, Nature.

[24]  Timothy C Ralph,et al.  Measurement-Device-Independent Approach to Entanglement Measures. , 2016, Physical review letters.

[25]  M. Żukowski,et al.  Entanglement swapping of noisy states: A kind of superadditivity in nonclassicality , 2003, quant-ph/0311194.

[26]  Adrian Kent,et al.  Private randomness expansion with untrusted devices , 2010, 1011.4474.

[27]  P. Parrilo,et al.  Complete family of separability criteria , 2003, quant-ph/0308032.

[28]  Sevag Gharibian,et al.  Strong NP-hardness of the quantum separability problem , 2008, Quantum Inf. Comput..

[29]  Michael J. W. Hall,et al.  Trust-free verification of steering: why you can't cheat a quantum referee , 2015, 1606.00196.

[30]  Valerio Scarani,et al.  Nonlocality tests enhanced by a third observer. , 2012, Physical review letters.

[31]  Jean-Daniel Bancal,et al.  Device-independent entanglement quantification and related applications. , 2013, Physical review letters.

[32]  Manik Banik,et al.  Measurement-device–independent randomness from local entangled states , 2014, 1401.1338.

[33]  N. Brunner,et al.  Genuinely Multipartite Entangled Quantum States with Fully Local Hidden Variable Models and Hidden Multipartite Nonlocality. , 2015, Physical review letters.

[34]  A C Doherty,et al.  Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. , 2007, Physical review letters.

[35]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[36]  Nicolas Gisin,et al.  Measurement-device-independent entanglement witnesses for all entangled quantum states. , 2012, Physical review letters.

[37]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[38]  Remigiusz Augusiak,et al.  Local hidden–variable models for entangled quantum states , 2014, 1405.7321.

[39]  Sibasish Ghosh,et al.  On witnessing arbitrary bipartite entanglement in a measurement device independent way , 2015, 1506.03985.

[40]  Xiongfeng Ma,et al.  Efficient measurement-device-independent detection of multipartite entanglement structure , 2016 .

[41]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[42]  H Zbinden,et al.  Resource-Efficient Measurement-Device-Independent Entanglement Witness. , 2015, Physical review letters.

[43]  Mohamed Bourennane,et al.  Experimental Measurement-Device-Independent Entanglement Detection , 2015, Scientific Reports.

[44]  G. Vidal,et al.  Robustness of entanglement , 1998, quant-ph/9806094.

[45]  Michael J. W. Hall,et al.  Einstein–Podolsky–Rosen steering and the steering ellipsoid , 2014, 1411.1517.

[46]  N. Brunner,et al.  Genuine hidden quantum nonlocality. , 2013, Physical review letters.

[47]  S. Wehner,et al.  Bell Nonlocality , 2013, 1303.2849.

[48]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[49]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[50]  Nicolas Brunner,et al.  Sufficient criterion for guaranteeing that a two-qubit state is unsteerable , 2015, 1510.06721.

[51]  V. Scarani,et al.  Quantum networks reveal quantum nonlocality. , 2010, Nature communications.

[52]  A. Acín,et al.  A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations , 2008, 0803.4290.

[53]  D Cavalcanti,et al.  General Method for Constructing Local Hidden Variable Models for Entangled Quantum States. , 2015, Physical review letters.

[54]  G. Tóth,et al.  Noise robustness of the nonlocality of entangled quantum states. , 2007, Physical review letters.

[55]  P. Parrilo,et al.  Distinguishing separable and entangled states. , 2001, Physical review letters.

[56]  Carlos Palazuelos,et al.  Superactivation of quantum nonlocality. , 2012, Physical review letters.

[57]  G. Tóth,et al.  Evaluating convex roof entanglement measures. , 2014, Physical Review Letters.

[58]  이화영 X , 1960, Chinese Plants Names Index 2000-2009.

[59]  N. Gisin,et al.  Grothendieck's constant and local models for noisy entangled quantum states , 2006, quant-ph/0606138.

[60]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.