High Photothermal Conversion of Ball-Milled Titanium Nitride Nanoparticles: Evaluation of Size and Amorphous Effect

[1]  A. Naldoni,et al.  Challenges in temperature measurements in gas-phase photothermal catalysis , 2022, Joule.

[2]  K. Saitow,et al.  Fast, Economical, and Reproducible Sensing from a 2D Si Wire Array: Accurate Characterization by Single Wire Spectroscopy. , 2022, Analytical chemistry.

[3]  Sanchari Chowdhury,et al.  Plasmon mediated deposition of Ni on Titanium Nitride nanoparticles: applications in enhanced photoreduction of bicarbonate , 2022, Materials Research Bulletin.

[4]  T. Yen,et al.  Optimized Titanium Nitride Epitaxial Film for Refractory Plasmonics and Solar Energy Harvesting , 2021 .

[5]  Bin Zhu,et al.  Interfacial Solar Vapor Generation: Materials and Structural Design , 2021 .

[6]  Mahdi Safa,et al.  Influence of preparation method on the structural, linear, and nonlinear optical properties of TiN nanoparticles , 2021, Journal of Materials Science: Materials in Electronics.

[7]  M. U. Farid,et al.  Plasmonic Titanium Nitride Nano-enabled Membranes with High Structural Stability for Efficient Photothermal Desalination. , 2021, ACS applied materials & interfaces.

[8]  K. Saitow,et al.  Large Field Enhancement of Nanocoral Structures on Porous Si Synthesized from Rice Husks. , 2020, ACS applied materials & interfaces.

[9]  Y. E. Monfared,et al.  Computational investigation of the plasmonic properties of TiN, ZrN, and HfN nanoparticles: the role of particle size, medium, and surface oxidation , 2020, 2006.15246.

[10]  D. Hou,et al.  Titanium nitride nanoparticle embedded membrane for photothermal membrane distillation. , 2020, Chemosphere.

[11]  R. Karaballi,et al.  Photothermal Transduction Efficiencies of Plasmonic Group 4 Metal Nitride Nanocrystals. , 2020, Langmuir : the ACS journal of surfaces and colloids.

[12]  V. Shalaev,et al.  A Solar Thermoplasmonic Nanofurnace for High Temperature Heterogeneous Catalysis. , 2020, Nano letters.

[13]  Zhiming M. Wang,et al.  Determining Plasmonic Hot Electrons and Photothermal Effects during H2 Evolution with TiN–Pt Nanohybrids , 2020 .

[14]  M. Losurdo,et al.  Nanoplasmonic Photothermal Heating and Near-Field Enhancements: A Comparative Survey of 19 Metals , 2020 .

[15]  K. Saitow,et al.  Spectral Visualization of Near-Infrared Enhancement in 2D Layered WS2 , 2020 .

[16]  R. Karaballi,et al.  Overview of Synthetic Methods to Prepare Plasmonic Transition Metal Nitride Nanoparticles. , 2020, Chemistry.

[17]  H. Sugimoto,et al.  Absolute Scattering Cross Sections of Titanium Nitride Nanoparticles Determined by Single-Particle Spectroscopy: Implications for Plasmonic Nanoantennas , 2019, ACS Applied Nano Materials.

[18]  S. Gwo,et al.  Titanium Nitride Epitaxial Films as a Plasmonic Material Platform: Alternative to Gold , 2019, ACS Photonics.

[19]  Guihua Yu,et al.  Synergistic Energy Nanoconfinement and Water Activation in Hydrogels for Efficient Solar Water Desalination. , 2019, ACS nano.

[20]  S. Pratsinis,et al.  Silica-Coated TiN Particles for Killing Cancer Cells. , 2019, ACS applied materials & interfaces.

[21]  F. Capasso,et al.  Excitation of Strong Localized Surface Plasmon Resonances in Highly Metallic Titanium Nitride Nano-Antennas for Stable Performance at Elevated Temperatures , 2019, ACS Applied Nano Materials.

[22]  S. Singamaneni,et al.  Photothermal Membrane Water Treatment for Two Worlds. , 2019, Accounts of chemical research.

[23]  A. Yao,et al.  TiN nanoparticles: synthesis and application as near-infrared photothermal agents for cancer therapy , 2019, Journal of Materials Science.

[24]  Huaiyuan Hu,et al.  Development of the applications of titanium nitride in fuel cells , 2019, Materials Today Chemistry.

[25]  R. Spolenak,et al.  Structural Color Sensors with Thermal Memory: Measuring Functional Properties of Ti‐Based Nitrides by Eye , 2018, Advanced Optical Materials.

[26]  U. Kortshagen,et al.  Nonthermal Plasma Synthesis of Titanium Nitride Nanocrystals with Plasmon Resonances at Near-Infrared Wavelengths Relevant to Photothermal Therapy , 2018, ACS Applied Nano Materials.

[27]  Q. Cheng,et al.  Surface Plasmon Resonance: Material and Interface Design for Universal Accessibility. , 2018, Analytical chemistry.

[28]  T. Nagao,et al.  All-Ceramic Microfibrous Solar Steam Generator: TiN Plasmonic Nanoparticle-Loaded Transparent Microfibers , 2017 .

[29]  Bryan M. Wong,et al.  A Non-Thermal Plasma Route to Plasmonic TiN Nanoparticles , 2017 .

[30]  Gilles Tessier,et al.  Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold , 2016, Scientific Reports.

[31]  T. Nagao,et al.  Titanium Nitride Nanoparticles as Plasmonic Solar Heat Transducers , 2016 .

[32]  Vladimir M. Shalaev,et al.  Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications , 2014, 1410.3920.

[33]  Justus C. Ndukaife,et al.  Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles. , 2013, Nano letters.

[34]  Edward H. Sargent,et al.  Broadband solar absorption enhancement via periodic nanostructuring of electrodes , 2013, Scientific Reports.

[35]  Romain Quidant,et al.  Thermo‐plasmonics: using metallic nanostructures as nano‐sources of heat , 2013 .

[36]  Xin Cai,et al.  Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. , 2013, ACS nano.

[37]  Harry A. Atwater,et al.  Erratum: Plasmonics for improved photovoltaic devices , 2010 .

[38]  Wei Zhang,et al.  Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances , 2006, Nanoscale Research Letters.

[39]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[40]  C. L. Choy,et al.  Thermal conductivity of polymers , 1977 .