Random Number Generators for Integrated Circuits and FPGAs

Random number generators are essential for modern day cryptography. Typically the secret data or function is established through the use of random number generator. It is assumed that the attacker has no access to these a random bits. According to Kerckhoffs’ principles the security of the cryptographic scheme should not depend on the secrecy of the algorithm but rather the secrecy of the key. Hence, in many cryptographic schemes the compromise of the random number generator leads to the collapse of the overall security. As the security of the overall system rests on these secrets, it is natural to set high standards for random number generators that produce them. The random number generator is expected to produce a stream of independent, statistically uniform, and unpredictable random bits. The output should be unpredictable even to the strongest adversary.

[1]  R. Rovatti,et al.  Embeddable ADC-based true random number generator for cryptographic applications exploiting nonlinear signal processing and chaos , 2005 .

[2]  Oded Goldreich,et al.  The bit extraction problem or t-resilient functions , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[3]  Ronen Shaltiel,et al.  True Random Number Generators Secure in a Changing Environment , 2003, CHES.

[4]  Thomas E. Tkacik A Hardware Random Number Generator , 2002, CHES.

[5]  Sergio Callegari,et al.  Post-processing of data generated by a chaotic pipelined ADC for the robust generation of perfectly random bitstreams , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[6]  Milos Drutarovský,et al.  True Random Number Generator Embedded in Reconfigurable Hardware , 2002, CHES.

[7]  Marco Bucci,et al.  Design of Testable Random Bit Generators , 2005, CHES.

[8]  Douglas R Stinson,et al.  Surveys in Combinatorics, 1999: Applications of Combinatorial Designs to Communications, Cryptography, and Networking , 1999 .

[9]  Markus Dichtl,et al.  How to Predict the Output of a Hardware Random Number Generator , 2003, CHES.

[10]  Hao Zheng,et al.  Design and Implementation of a True Random Number Generator Based on Digital Circuit Artifacts , 2003, CHES.

[11]  Berk Sunar,et al.  A Provably Secure True Random Number Generator with Built-In Tolerance to Active Attacks , 2007, IEEE Transactions on Computers.

[12]  Kris Gaj,et al.  An embedded true random number generator for FPGAs , 2004, FPGA '04.

[13]  Ingrid Verbauwhede,et al.  FPGA Vendor Agnostic True Random Number Generator , 2006, 2006 International Conference on Field Programmable Logic and Applications.

[14]  Jovan Dj. Golic New paradigms for digital generation and post-processing of random data , 2004, IACR Cryptol. ePrint Arch..

[15]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[16]  Jovan Dj. Golic,et al.  High-Speed True Random Number Generation with Logic Gates Only , 2007, CHES.

[17]  L. Kocarev,et al.  Chaos-based random number generators-part I: analysis [cryptography] , 2001 .

[18]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[19]  R. Rovatti,et al.  A Fast Chaos-based True Random Number Generator for Cryptographic Applications , 2006, 2006 Proceedings of the 32nd European Solid-State Circuits Conference.

[20]  Marco Bucci,et al.  A Design of Reliable True Random Number Generator for Cryptographic Applications , 1999, CHES.

[21]  Charles J. Colbourn Group testing for consecutive positives , 1999 .

[22]  Werner Schindler,et al.  Evaluation Criteria for True (Physical) Random Number Generators Used in Cryptographic Applications , 2002, CHES.

[23]  Berk Sunar,et al.  Improving the Robustness of Ring Oscillator TRNGs , 2010, TRETS.