On some constacyclic codes over $$\mathbb {Z}_{4}\left[ u\right] /\left\langle u^{2}-1\right\rangle $$Z4u/u2-1, their $$\mathbb {Z}_4$$Z4 images, and new codes

In this paper, we study $$\lambda $$λ-constacyclic codes over the ring $$R=\mathbb {Z}_4+u\mathbb {Z}_4$$R=Z4+uZ4 where $$u^{2}=1$$u2=1, for $$\lambda =3+2u$$λ=3+2u and $$2+3u$$2+3u. Two new Gray maps from R to $$\mathbb {Z}_4^{3}$$Z43 are defined with the goal of obtaining new linear codes over $$\mathbb {Z}_4$$Z4. The Gray images of $$\lambda $$λ-constacyclic codes over R are determined. We then conducted a computer search and obtained many $$\lambda $$λ-constacyclic codes over R whose $$\mathbb {Z}_4$$Z4-images have better parameters than currently best-known linear codes over $$\mathbb {Z}_4$$Z4.

[1]  Mohammad Ashraf,et al.  $(1+2u)$-constacyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$ , 2015, ArXiv.

[2]  Liqin Qian,et al.  On constacyclic codes over Z4[u]/〈u2-1〉 and their Gray images , 2016, Finite Fields Their Appl..

[3]  Suat Karadeniz,et al.  Linear Codes over Z_4+uZ_4: MacWilliams identities, projections, and formally self-dual codes , 2014, Finite Fields Their Appl..

[4]  Zhe-Xian X. Wan,et al.  Quaternary Codes , 1997 .

[5]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[6]  Patrick Solé,et al.  Cyclic codes over M2(F2) , 2013, J. Frankl. Inst..

[7]  Bahattin Yildiz,et al.  On cyclic codes over ℤ4 + uℤ4 and their ℤ4-images , 2014, Int. J. Inf. Coding Theory.

[8]  E. Rains,et al.  3-Colored 5-Designs and Z4-Codes , 2000 .

[9]  Edgar Martínez-Moro,et al.  Linear codes over Z4[x]/〈x² + 2x〉 , 2015 .

[10]  Nuh Aydin,et al.  Cyclic and some constacyclic codes over the ring , 2016, Finite Fields Their Appl..

[11]  Suat Karadeniz,et al.  Self-dual codes over F2+uF2+vF2+uvF2 , 2010, J. Frankl. Inst..

[12]  Pratyush Kumar,et al.  N ov 2 01 5 DNA Cyclic Codes Over The Ring F 2 [ u , v ] / 〈 u 2 − 1 , v 3 − v , uv − vu 〉 , 2015 .

[13]  Patrick Solé,et al.  A quaternary cyclic code, and a family of quadriphase sequences with low correlation properties , 1989, Coding Theory and Applications.

[14]  Rama Krishna Bandi,et al.  Self-dual codes over ℤ4 + wℤ4 , 2015, Discret. Math. Algorithms Appl..