Sequential Double Robustness in Right-Censored Longitudinal Models

Consider estimating the G-formula for the counterfactual mean outcome under a given treatment regime in a longitudinal study. Bang and Robins provided an estimator for this quantity that relies on a sequential regression formulation of this parameter. This approach is doubly robust in that it is consistent if either the outcome regressions or the treatment mechanisms are consistently estimated. We define a stronger notion of double robustness, termed sequential double robustness, for estimators of the longitudinal G-formula. The definition emerges naturally from a more general definition of sequential double robustness for the outcome regression estimators. An outcome regression estimator is sequentially doubly robust (SDR) if, at each subsequent time point, either the outcome regression or the treatment mechanism is consistently estimated. This form of robustness is exactly what one would anticipate is attainable by studying the remainder term of a first-order expansion of the G-formula parameter. We show that a particular implementation of an existing procedure is SDR. We also introduce a novel SDR estimator, whose development involves a novel translation of ideas used in targeted minimum loss-based estimation to the infinite-dimensional setting.

[1]  J. Robins,et al.  Improved double-robust estimation in missing data and causal inference models. , 2012, Biometrika.

[2]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[3]  Andrea Rotnitzky,et al.  Doubly Robust Estimation of the Area Under the Receiver-Operating Characteristic Curve in the Presence of Verification Bias , 2006 .

[4]  Aad van der Vaart,et al.  The Cross-Validated Adaptive Epsilon-Net Estimator , 2006 .

[5]  M. J. van der Laan,et al.  Targeted Minimum Loss Based Estimation of Causal Effects of Multiple Time Point Interventions , 2012, The international journal of biostatistics.

[6]  Mark J van der Laan,et al.  The International Journal of Biostatistics A Doubly Robust Censoring Unbiased Transformation , 2011 .

[7]  J. Robins,et al.  Doubly Robust Estimation in Missing Data and Causal Inference Models , 2005, Biometrics.

[8]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[9]  Vladimir Vapnik,et al.  Principles of Risk Minimization for Learning Theory , 1991, NIPS.

[10]  Mark J. van der Laan,et al.  Simulating Longitudinal Data with Causal Inference Applications , 2015 .

[11]  Edward H Kennedy,et al.  Non‐parametric methods for doubly robust estimation of continuous treatment effects , 2015, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[12]  Susan Gruber,et al.  One-Step Targeted Minimum Loss-based Estimation Based on Universal Least Favorable One-Dimensional Submodels , 2016, The international journal of biostatistics.

[13]  S. Dudoit,et al.  Unified Cross-Validation Methodology For Selection Among Estimators and a General Cross-Validated Adaptive Epsilon-Net Estimator: Finite Sample Oracle Inequalities and Examples , 2003 .

[14]  D. Benkeser,et al.  Data-adaptive Estimation in Longitudinal Data Structures with Applications in Vaccine Efficacy Trials , 2016 .

[15]  S. Keleş,et al.  Asymptotically optimal model selection method with right censored outcomes , 2004 .

[16]  A. V. D. Vaart Asymptotic Statistics: Delta Method , 1998 .

[17]  M. J. van der Laan Targeted Estimation of Nuisance Parameters to Obtain Valid Statistical Inference , 2014, The international journal of biostatistics.

[18]  S. Keleş,et al.  Statistical Applications in Genetics and Molecular Biology Asymptotic Optimality of Likelihood-Based Cross-Validation , 2011 .

[19]  J. Pfanzagl Estimation in semiparametric models , 1990 .

[20]  Jianqing Fan Local Polynomial Modelling and Its Applications: Monographs on Statistics and Applied Probability 66 , 1996 .

[21]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[22]  J. Robins,et al.  Adjusting for Nonignorable Drop-Out Using Semiparametric Nonresponse Models , 1999 .

[23]  S. A. van deGeer Estimating a regression function , 1988 .

[24]  J. Robins,et al.  Marginal Structural Models and Causal Inference in Epidemiology , 2000, Epidemiology.

[25]  Romain Neugebauer,et al.  simcausal R Package: Conducting Transparent and Reproducible Simulation Studies of Causal Effect Estimation with Complex Longitudinal Data. , 2017, Journal of statistical software.

[26]  J. Robins Correcting for non-compliance in randomized trials using structural nested mean models , 1994 .

[27]  Marie Davidian,et al.  Improved Doubly Robust Estimation When Data Are Monotonely Coarsened, with Application to Longitudinal Studies with Dropout , 2011, Biometrics.

[28]  M. J. Laan,et al.  Doubly robust nonparametric inference on the average treatment effect , 2017, Biometrika.

[29]  I. James,et al.  Linear regression with censored data , 1979 .

[30]  Andrew Copas,et al.  Doubly robust generalized estimating equations for longitudinal data , 2009, Statistics in medicine.

[31]  J. V. Ryzin,et al.  Regression Analysis with Randomly Right-Censored Data , 1981 .

[32]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[33]  P. Bartlett,et al.  Empirical minimization , 2006 .

[34]  Andrea Rotnitzky,et al.  Estimation of regression models for the mean of repeated outcomes under nonignorable nonmonotone nonresponse. , 2007, Biometrika.

[35]  J. Robins Analytic Methods for Estimating HIV-Treatment and Cofactor Effects , 2002 .

[36]  J. Robins A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect , 1986 .

[37]  A. Rotnitzky,et al.  Multiple robustness in factorized likelihood models , 2017, Biometrika.

[38]  James M. Robins,et al.  Unified Methods for Censored Longitudinal Data and Causality , 2003 .

[39]  A. W. van der Vaart,et al.  A local maximal inequality under uniform entropy. , 2010, Electronic journal of statistics.

[40]  P. Bartlett,et al.  Local Rademacher complexities , 2005, math/0508275.