Self-Dual Codes over F3 and Negacirculant Conference Matrices

Previously, self-dual codes ternary have been constructed from conference matrices. In this paper, we present codes constructed from negacirculant conference matrices. A necessary condition for these codes to be self-dual is given, and examples are given for lengths up to 108. The equivalence with the Pless symmetry codes is established

[1]  N. J. A. Sloane,et al.  Self-dual codes over GF(3) and GF(4) of length not exceeding 16 , 1979, IEEE Trans. Inf. Theory.

[2]  Neil J. A. Sloane,et al.  Self-Dual Codes over ${\text{GF}}( 3 )$ , 1976 .

[3]  Dieter Jungnickel,et al.  Perfect and Almost Perfect Sequences , 1999, Discret. Appl. Math..

[4]  E. M. Rains,et al.  Self-Dual Codes , 2002, math/0208001.

[5]  J. J. Seidel,et al.  Orthogonal Matrices with Zero Diagonal , 1967, Canadian Journal of Mathematics.

[6]  N. J. A. Sloane,et al.  Ternary codes of minimum weight 6 and the classification of the self-dual codes of length 20 , 1980, IEEE Trans. Inf. Theory.

[7]  Vera Pless,et al.  Symmetry Codes over GF(3) and New Five-Designs , 1972, J. Comb. Theory A.

[8]  T. Gulliver,et al.  Self-Dual Codes over and Weighing Matrices , 2001 .

[9]  N. J. A. Sloane,et al.  On ternary self-dual codes of length 24 , 1981, IEEE Trans. Inf. Theory.

[10]  Eric M. Rains,et al.  Shadow Bounds for Self-Dual Codes , 1998, IEEE Trans. Inf. Theory.

[11]  A. Brouwer Bounds on the size of linear codes , 1998 .