Description and evaluation of the bergen climate model: ARPEGE coupled with MICOM

Abstract A new coupled atmosphere–ocean–sea ice model has been developed, named the Bergen Climate Model (BCM). It consists of the atmospheric model ARPEGE/IFS, together with a global version of the ocean model MICOM including a dynamic–thermodynamic sea ice model. The coupling between the two models uses the OASIS software package. The new model concept is described, and results from a 300-year control integration is evaluated against observational data. In BCM, both the atmosphere and the ocean components use grids which can be irregular and have non-matching coastlines. Much effort has been put into the development of optimal interpolation schemes between the models, in particular the non-trivial problem of flux conservation in the coastal areas. A flux adjustment technique has been applied to the heat and fresh-water fluxes. There is, however, a weak drift in global mean sea-surface temperature (SST) and sea-surface salinity (SSS) of respectively 0.1 °C and 0.02 psu per century. The model gives a realistic simulation of the radiation balance at the top-of-the-atmosphere, and the net surface fluxes of longwave, shortwave, and turbulent heat fluxes are within observed values. Both global and total zonal means of cloud cover and precipitation are fairly close to observations, and errors are mainly related to the strength and positioning of the Hadley cell. The mean sea-level pressure (SLP) is well simulated, and both the mean state and the interannual standard deviation show realistic features. The SST field is several degrees too cold in the equatorial upwelling area in the Pacific, and about 1 °C too warm along the eastern margins of the oceans, and in the polar regions. The deviation from Levitus salinity is typically 0.1 psu – 0.4 psu, with a tendency for positive anomalies in the Northern Hemisphere, and negative in the Southern Hemisphere. The sea-ice distribution is realistic, but with too thin ice in the Arctic Ocean and too small ice coverage in the Southern Ocean. These model deficiencies have a strong influence on the surface air temperatures in these regions. Horizontal oceanic mass transports are in the lower range of those observed. The strength of the meridional overturning in the Atlantic is 18 Sv. An analysis of the large-scale variability in the model climate reveals realistic El Niño – Southern Oscillation (ENSO) and North Atlantic–Arctic Oscillation (NAO/AO) characteristics in the SLP and surface temperatures, including spatial patterns, frequencies, and strength. While the NAO/AO spectrum is white in SLP and red in temperature, the ENSO spectrum shows an energy maximum near 3 years.

[1]  W. Washington,et al.  A large-scale numerical model of sea ice , 1979 .

[2]  Gurvan Madec,et al.  A global ocean mesh to overcome the North Pole singularity , 1996 .

[3]  D. Parker,et al.  Marine surface temperature: Observed variations and data requirements , 1995 .

[4]  Ingo Kirchner,et al.  ENSO variability and atmospheric response in a global coupled atmosphere-ocean GCM , 1996 .

[5]  E. Raschke,et al.  Diurnal variability of the Earth Radiation Budget: Sampling requirements, time integration aspects and error estimates for the Earth Radiation Budget Experiment (ERBE) , 1991 .

[6]  E. Guilyardi,et al.  Performance of the OPA/ARPEGE-T21 global ocean-atmosphere coupled model , 1997 .

[7]  John K. Dukowicz,et al.  Inclusion of Thermobaricity in Isopycnic-Coordinate Ocean Models , 1999 .

[8]  G. Tucker Precipitation over the North Atlantic Ocean , 1962 .

[9]  A Topographic–Rossby Mode Resonance over the Iceland–Faeroe Ridge , 1996 .

[10]  Timothy P. Boyer,et al.  World Ocean Atlas 1994. Volume 3. Salinity , 1994 .

[11]  M. Collins,et al.  The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments , 2001 .

[12]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[13]  R. Bourke,et al.  Contour mapping of Arctic basin ice draft and roughness parameters , 1992 .

[14]  Timothy P. Boyer,et al.  World Ocean Atlas 1994. Volume 4. Temperature , 1994 .

[15]  Jf. Geleyn,et al.  Use of a Modified Richardson Number for Parameterizing the Effect of Shallow Convection , 1986 .

[16]  Stefan Rahmstorf,et al.  Long-Term Global Warming Scenarios Computed with an Efficient Coupled Climate Model , 1999 .

[17]  D. Shea Climatological Atlas: 1950-1979 Surface Air Temperature, Precipitation, Sea-level Pressure, and Sea-surface Temperature (45 S-90 N) , 1986 .

[18]  W. Rossow,et al.  ISCCP Cloud Data Products , 1991 .

[19]  W. Hibler A Dynamic Thermodynamic Sea Ice Model , 1979 .

[20]  Rainer Bleck,et al.  Salinity-driven Thermocline Transients in a Wind- and Thermohaline-forced Isopycnic Coordinate Model of the North Atlantic , 1992 .

[21]  John E. Walsh,et al.  Recent decrease of sea level pressure in the central Arctic , 1996 .

[22]  R. Payne,et al.  Albedo of the Sea Surface , 1972 .

[23]  J. Geleyn,et al.  Interpolation of wind, temperature and humidity values from model levels to the height of measurement , 1988 .

[24]  David Rind,et al.  A coupled atmosphere‐ocean model for transient climate change studies , 1995 .

[25]  D. Rothrock,et al.  Thinning of the Arctic sea‐ice cover , 1999 .

[26]  P. Xie,et al.  Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs , 1997 .

[27]  Balaji Rajagopalan,et al.  Analyses of global sea surface temperature 1856–1991 , 1998 .

[28]  J. Turner,et al.  A one‐dimensional model of the seasonal thermocline II. The general theory and its consequences , 1967 .

[29]  A. Simmons,et al.  An Energy and Angular-Momentum Conserving Vertical Finite-Difference Scheme and Hybrid Vertical Coordinates , 1981 .

[30]  T. Fichefet,et al.  A Model Study of Upper Ocean Sea Ice Interactions , 1988 .

[31]  A. Semtner A MODEL FOR THE THERMODYNAMIC GROWTH OF SEA ICE IN NUMERICAL INVESTIGATIONS OF CLIMATE , 1975 .

[32]  A. Ohmura,et al.  First global WCRP shortwave surface radiation budget dataset , 1995 .

[33]  Richard G. Jones,et al.  Simulation of climate change over Europe using a global variable resolution general circulation model , 1998 .

[34]  M. Déqué,et al.  Impact of a simple parameterization of convective gravity-wave drag in a stratosphere-troposphere general circulation model and its sensitivity to vertical resolution , 1998 .

[35]  V. Ramanathan,et al.  Warm Pool Heat Budget and Shortwave Cloud Forcing: A Missing Physics? , 1995, Science.

[36]  J. F. Geleyn,et al.  A new data set of satellite-derived surface albedo values for operational use at ECMWF , 1983 .

[37]  R. Wollast,et al.  Ocean margin processes in global change. , 1991 .

[38]  A. Weaver,et al.  The Canadian Centre for Climate Modelling and Analysis global coupled model and its climate , 2000 .

[39]  James J. Hack,et al.  The simulated Earth radiation budget of the National Center for Atmospheric Research community climate model CCM2 and comparisons with the Earth Radiation Budget Experiment (ERBE) , 1994 .

[40]  H. Douville,et al.  A new snow parameterization for the Météo-France climate model , 1995 .

[41]  J. Morcrette Radiation and cloud radiative properties in the European Centre for Medium Range Weather Forecasts forecasting system , 1991 .

[42]  Donald J. Cavalieri,et al.  Arctic sea ice extents, areas, and trends, 1978-1996 , 1999 .

[43]  G. Paltridge,et al.  Radiative processes in meteorology and climatology , 1976 .

[44]  Laurent Terray,et al.  OASIS : le couplage océan-atmosphère , 1995 .

[45]  Richard C. J. Somerville,et al.  On the use of a coordinate transformation for the solution of the Navier-Stokes equations , 1975 .

[46]  R. E. Moritz,et al.  Toward an Explanation of the Annual Cycle of Cloudiness over the Arctic Ocean , 1999 .

[47]  S. Valcke,et al.  Transient CO2 Experiment using the ARPEGE/OPAICE non flux corrected coupled model , 1998 .

[48]  M. Déqué,et al.  High resolution climate simulation over Europe , 1995 .

[49]  J. Royer,et al.  A statistical cloud scheme for use in an AGCM , 1993 .

[50]  S. Rahmstorf Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle , 1995, Nature.

[51]  Philippe Gaspar,et al.  Modeling the Seasonal Cycle of the Upper Ocean , 1988 .

[52]  J. Hurrell Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation , 1995, Science.

[53]  B. Barkstrom,et al.  Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment , 1990 .

[54]  Ralph J. Slutz,et al.  A Comprehensive Ocean-Atmosphere Data Set , 1987 .

[55]  Bruce R. Barkstrom,et al.  The Earth Radiation Budget Experiment (ERBE). , 1984 .

[56]  Geir Evensen,et al.  Coordinate Transformation on a Sphere Using Conformal Mapping , 1999 .

[57]  Adrian Simmons,et al.  Use of Reduced Gaussian Grids in Spectral Models , 1991 .

[58]  Larry L. Stowe,et al.  Shortwave, longwave, and net cloud-radiative forcing as determined from Nimbus 7 observations , 1991 .

[59]  John F. B. Mitchell,et al.  The second Hadley Centre coupled ocean-atmosphere GCM: model description, spinup and validation , 1997 .

[60]  Josef M. Oberhuber,et al.  An Atlas Based on the COADS Data Set: the Budgets of Heat Buoyancy and Turbulent Kinetic Energy at t , 1988 .

[61]  C. Covey,et al.  Intercomparison of present and future climates simulated by coupled ocean-atmosphere GCMs , 2000 .

[62]  Keith M. Hines,et al.  Artificial surface pressure trends in the NCEP-NCAR reanalysis over the Southern Ocean and Antarctica , 2000 .

[63]  G. Boer,et al.  CMIP1 evaluation and intercomparison of coupled climate models , 2001 .

[64]  Aaron Boone,et al.  The Influence of the Inclusion of Soil Freezing on Simulations by a Soil–Vegetation–Atmosphere Transfer Scheme , 2000 .

[65]  Stefan Rahmstorf,et al.  Rapid changes of glacial climate simulated in a coupled climate model , 2001, Nature.

[66]  H. Giordani,et al.  The Land Surface Scheme ISBA within the Météo-France Climate Model ARPEGE. Part I. Implementation and Preliminary Results , 1995 .

[67]  Franco Islott Alleviation of Stationary Biases in a GCM through a Mountain Drag Parameterization Scheme and a Simple Representation of Mountain Lift Forces , 1999 .

[68]  P. Dyson,et al.  Signatures of the ionospheric cusp in digital ionosonde measurements of plasma drift above Casey, Antarctica , 1999 .

[69]  P. Jones,et al.  Hemispheric Surface Air Temperature Variations: A Reanalysis and an Update to 1993. , 1994 .

[70]  C. Dorman,et al.  A temperature correction for Tucker's ocean rainfall estimates , 1978 .

[71]  William B. Rossow,et al.  Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets: 2. Validation and first results , 1995 .

[72]  Ola M. Johannessen,et al.  Analysis of merged SMMR‐SSMI time series of Arctic and Antarctic sea ice parameters 1978–1995 , 1997 .

[73]  J. Louis A parametric model of vertical eddy fluxes in the atmosphere , 1979 .

[74]  P. Bougeault,et al.  A Simple Parameterization of the Large-Scale Effects of Cumulus Convection , 1985 .

[75]  M. Benno Blumenthal,et al.  Reduced space optimal analysis for historical data sets: 136 years of Atlantic sea surface temperatures , 1997 .

[76]  S. Planton,et al.  A Simple Parameterization of Land Surface Processes for Meteorological Models , 1989 .

[77]  Hervé Giordani,et al.  A modified parameterization of flux-profile relationships in the surface layer using different roughness length values for heat and momentum , 1995 .

[78]  K. Trenberth,et al.  Earth's annual global mean energy budget , 1997 .

[79]  T. N. Palmer,et al.  Quantifying the risk of extreme seasonal precipitation events in a changing climate , 2002, Nature.

[80]  J. Hoffman,et al.  The Operational Hemispheric Model at the French Meteorological Service , 1986 .

[81]  R. Pollard,et al.  Structure and transport of the Antarctic Circumpolar Current and Agulhas Return Current at 40°E , 1993 .

[82]  S. Gorshkov,et al.  World ocean atlas , 1976 .

[83]  Daniel Cariolle,et al.  Southern hemisphere medium-scale waves and total ozone disturbances in a spectral general circulation model , 1986 .

[84]  M. Cane,et al.  Reduced Space Optimal Interpolation of Historical Marine Sea Level Pressure: 1854–1992* , 2000 .

[85]  Peter Wadhams,et al.  Further evidence of ice thinning in the Arctic Ocean , 2000 .

[86]  U. Schneider,et al.  Global precipitation estimates based on a technique for combining satellite-based estimates, rain gauge analysis, and NWP model precipitation information , 1995 .

[87]  John F. B. Mitchell,et al.  The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments , 2000 .

[88]  Thomas M. Smith,et al.  Improved Global Sea Surface Temperature Analyses Using Optimum Interpolation , 1994 .

[89]  T. Palmer A nonlinear dynamical perspective on model error: A proposal for non‐local stochastic‐dynamic parametrization in weather and climate prediction models , 2001 .

[90]  A. Baumgartner The world water balance , 1975 .

[91]  Olivier Thual,et al.  Climatology and interannual variability simulated by the ARPEGE-OPA coupled model , 1995 .

[92]  M. Déqué,et al.  The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling , 1994 .

[93]  Nancy A. Ritchey,et al.  Seasonal variation of surface radiation budget derived from International Satellite Cloud Climatology Project C1 data , 1992 .

[94]  Shalina,et al.  Satellite Evidence for an Arctic Sea Ice Cover in Transformation. , 1999, Science.

[95]  T. Oki,et al.  Design of Total Runoff Integrating Pathways (TRIP)—A Global River Channel Network , 1998 .

[96]  Jean-Marc Molines,et al.  DYNAMO : dynamics of North Atlantic models : simulation and assimilation with high resolution models , 1997 .

[97]  Michael Steele,et al.  PHC: A Global Ocean Hydrography with a High-Quality Arctic Ocean , 2001 .

[98]  François Lott,et al.  A new subgrid‐scale orographic drag parametrization: Its formulation and testing , 1997 .

[99]  S. O’Farrell,et al.  Transient Climate Change in the CSIRO Coupled Model with Dynamic Sea Ice , 1997 .