Algorithms for ARQ feedback message transmission in IEEE 802.16m systems

This paper proposes two algorithms for automatic repeat request (ARQ) feedback message transmission in IEEE 802.16m systems. The proposed algorithms determine the transmission interval of an ARQ feedback message on the basis of the number of transmitted ARQ blocks or the number of received ARQ blocks. If the receiver frequently transmits ARQ feedback messages, the system throughput increases because there is no need to wait for ARQ feedback acknowledgements, though the feedback overhead also increases. Hence, determining the appropriate transmission time of an ARQ feedback message is very important for reaching a compromise between the throughput and the ARQ feedback overhead. The simulation results show that the proposed algorithms achieve a better throughput level than the conventional scheme described in the IEEE 802.16m standard.

[1]  Ieee Microwave Theory,et al.  IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems Draft Amendment: Management Information Base Extensions , 2007 .

[2]  Olli Alanen,et al.  Performance analysis of the ieee 802.16 arq mechanism , 2007, MSWiM '07.

[3]  Francesco Chiti,et al.  Performance Analysis of a ARQ-SR Protocol over a Wireless Packet Network Channel , 2006, 2006 IEEE International Conference on Communications.

[4]  Alexander Sayenko,et al.  Performance comparison of HARQ and ARQ mechanisms in IEEE 802.16 networks , 2008, MSWiM '08.

[5]  Jack Kurzweil,et al.  An introduction to digital communications , 1999 .

[6]  Timo Hämäläinen,et al.  On ARQ feedback intensity of the IEEE 802.16 ARQ mechanism , 2008, 2008 International Conference on Telecommunications.

[7]  Zdenek Becvar,et al.  Overhead of ARQ mechanism in IEEE 802.16 networks , 2011, Telecommun. Syst..

[8]  James She,et al.  Performance Analysis of ARQ with Opportunistic Scheduling in IEEE 802.16 Networks , 2007, IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference.

[9]  Timo Hämäläinen,et al.  ARQ Aware Scheduling for the IEEE 802.16 Base Station , 2008, 2008 IEEE International Conference on Communications.

[10]  H. Martikainen,et al.  Optimal MAC PDU Size in IEEE 802.16 , 2008, 2008 4th International Telecommunication Networking Workshop on QoS in Multiservice IP Networks.

[11]  Upena D. Dalal,et al.  A Survey of Mobile WiMAX IEEE 802.16m Standard , 2010, ArXiv.

[12]  Changjia Chen,et al.  Performance Analysis of ARQ Scheme in IEEE 802.16 , 2006 .

[13]  Pin-Han Ho,et al.  Performance analysis of the cumulative ARQ in IEEE 802.16 networks , 2010, Wirel. Networks.

[14]  Michael B. Pursley Introduction to Digital Communications , 2004 .

[15]  Pero Latkoski,et al.  Delay and throughput analysis of IEEE 802.16 ARQ mechanism , 2009, 2009 IFIP International Conference on Wireless and Optical Communications Networks.

[16]  Olli Alanen,et al.  ARQ parameters for VoIP in IEEE 802.16 networks , 2009, 2009 Wireless Telecommunications Symposium.

[17]  H. Sirisena,et al.  Contention Based Negative Feedback ARQ for VoIP Services in IEEE 802.16 Networks , 2006, 2006 14th IEEE International Conference on Networks.