Closed-loop identification via output fast sampling

This paper addresses a challenge: Is a closed-loop system without external excitation identifiable? The so-called fast-sampling direct approach provides a positive answer. It removes a traditional restrictive identifiability condition for linear output feedback closed-loop systems, i.e., an external persistently exciting test signal is not required. Identifiability is analyzed using the lifting technique, the bifrequency map and bispectrum concepts. The proposed approach is further investigated and evaluated by simulation.

[1]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[2]  T. Claasen,et al.  On stationary linear time-varying systems , 1982 .

[3]  William A. Gardner,et al.  Introduction to random processes with applications to signals and systems: Reviewer: D. W. Clarke Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PK, England , 1988, Autom..

[4]  Yucai Zhu,et al.  Multivariable System Identification For Process Control , 2001 .

[5]  Lennart Ljung,et al.  Closed-loop identification revisited , 1999, Autom..

[6]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[7]  Michel Gevers,et al.  Asymptotic variance expressions for closed-loop identification , 2001, Autom..

[8]  Bruce A. Francis,et al.  Optimal Sampled-Data Control Systems , 1996, Communications and Control Engineering Series.

[9]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[10]  Ali Esmaili,et al.  Direct and two-step methods for closed-loop identification: a comparison of asymptotic and finite data set performance , 2000 .

[11]  L. Zadeh,et al.  Frequency Analysis of Variable Networks , 1950, Proceedings of the IRE.

[12]  Paul M.J. Van den Hof,et al.  Closed-Loop Issues in System Identification , 1997 .

[13]  C. Loeffler,et al.  Optimal design of periodically time-varying and multirate digital filters , 1984 .

[14]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[15]  K. Poolla,et al.  Robust control of linear time-invariant plants using periodic compensation , 1985 .

[16]  A. Izenman Introduction to Random Processes, With Applications to Signals and Systems , 1987 .

[17]  P. P. Vaidyanathan,et al.  Bifrequency and bispectrum maps: a new look at multirate systems with stochastic inputs , 2000, IEEE Trans. Signal Process..

[18]  Lennart Ljung,et al.  Identification of processes in closed loop - identifiability and accuracy aspects , 1977, Autom..

[19]  P. Peebles Probability, Random Variables and Random Signal Principles , 1993 .

[20]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[21]  P. P. Vaidyanathan,et al.  Effects of Multirate Systems on the Statistical Properties of Random Signals , 1993, IEEE Trans. Signal Process..

[22]  Tongwen Chen,et al.  Representations of linear periodically time-varying and multirate systems , 2002, IEEE Trans. Signal Process..

[23]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[24]  John F. MacGregor,et al.  Closed-loop identification: the role of the noise model and prefilters , 1995 .

[25]  L. Ljung,et al.  Design variables for bias distribution in transfer function estimation , 1986, The 23rd IEEE Conference on Decision and Control.

[26]  Thomas E Marlin,et al.  Process Control , 1995 .

[27]  Lianming Sun,et al.  Output intersampling approach to direct closed-loop identification , 2001, IEEE Trans. Autom. Control..

[28]  S. Biyiksiz,et al.  Multirate digital signal processing , 1985, Proceedings of the IEEE.

[29]  Akira Sano,et al.  Over-sampling approach to closed-loop identification , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[30]  Lennart Ljung,et al.  Optimal experiment designs with respect to the intended model application , 1986, Autom..

[31]  Sirish L. Shah,et al.  Closed-loop identification: a two step approach☆ , 1997 .

[32]  P. Vaidyanathan Multirate Systems And Filter Banks , 1992 .