Abstract Arrowian aggregation

In a general framework of abstract binary aggregation, we characterize aggregation problems in terms of the monotone Arrowian aggregators they admit. Specifically, we characterize the problems that admit non-dictatorial, locally non-dictatorial, anonymous, and neutral monotone Arrowian aggregation, respectively. As a consequence of these characterizations, we also obtain new results on the possibility of strategy-proof social choice and the "concrete Arrowian" aggregation of preferences into a social ordering on generalized single-peaked domains.

[1]  P. Pettit Deliberative Democracy and the Discursive Dilemma , 2001 .

[2]  P. Fishburn,et al.  Algebraic aggregation theory , 1986 .

[3]  H. Moulin Axioms of Cooperative Decision Making , 1988 .

[4]  G. Thompson,et al.  The Theory of Committees and Elections. , 1959 .

[5]  Klaus Nehring,et al.  The Structure of Strategy-Proof Social Choice Part II: Non-Dictatorship, Anonymity and Neutrality * , 2005 .

[6]  Christian List,et al.  Judgement Aggregation: A Survey , 2009, The Handbook of Rational and Social Choice.

[7]  C. List,et al.  Judgment aggregation: A survey , 2009 .

[8]  Christian List,et al.  Which Worlds are Possible? A Judgment Aggregation Problem , 2008, J. Philos. Log..

[9]  C. Puppe,et al.  The Handbook of Rational and Social Choice , 2009 .

[10]  S. Barberà,et al.  Voting under Constraints , 1997 .

[11]  C. List,et al.  Aggregating Sets of Judgments: An Impossibility Result , 2002, Economics and Philosophy.

[12]  Kenneth J. Arrow,et al.  Arrow’s Theorem , 2008 .

[13]  Andreu Mas-Colell,et al.  General Possibility Theorems for Group Decisions , 1972 .

[14]  Robert B. Wilson On the theory of aggregation , 1975 .

[15]  Lawrence G. Sager,et al.  Unpacking the Court , 1986 .

[16]  L. A. Goodman,et al.  Social Choice and Individual Values , 1951 .

[17]  Fred R. McMorris,et al.  The median function on median graphs and semilattices , 2000, Discret. Appl. Math..

[18]  Georges-Théodule Guilbaud Les théories de l'intérêt général et le problème logique de l'agrégation , 2012 .

[19]  Salvador Barberà,et al.  Voting by Committees , 1991 .

[20]  Klaus Nehring,et al.  Arrow’s theorem as a corollary , 2003 .

[21]  Klaus Nehring,et al.  Consistent judgement aggregation: the truth-functional case , 2008, Soc. Choice Welf..

[22]  F. Dietrich,et al.  Propositionwise judgment aggregation , 2009 .

[23]  Christian List,et al.  The impossibility of unbiased judgment aggregation , 2005 .

[24]  Ron Holzman,et al.  Aggregation of binary evaluations for truth-functional agendas , 2009, Soc. Choice Welf..

[25]  Van de M. L. J. Vel Theory of convex structures , 1993 .

[26]  Frank Harary,et al.  Graph Theory , 2016 .

[27]  Philippe Mongin,et al.  The premiss-based approach to judgment aggregation , 2010, J. Econ. Theory.

[28]  Ron Holzman,et al.  Aggregation of binary evaluations with abstentions , 2010, J. Econ. Theory.

[29]  Arunava Sen,et al.  Dictatorial domains , 2003 .

[30]  Ron Holzman,et al.  Aggregation of binary evaluations , 2010, J. Econ. Theory.

[31]  Hugo Sonnenschein,et al.  Voting By Quota And Committee , 1988 .

[32]  Christian List,et al.  Arrow’s theorem in judgment aggregation , 2005, Soc. Choice Welf..

[33]  Ariel Rubinstein,et al.  On the Question "Who is a J?": A Social Choice Approach , 1998 .

[34]  Christian List,et al.  A Model of Path-Dependence in Decisions over Multiple Propositions , 2002, American Political Science Review.

[35]  M. Satterthwaite,et al.  Strategy-proofness and single-peakedness , 1976 .

[36]  Klaus Nehring,et al.  Justifiable Group Choice , 2009, J. Econ. Theory.

[37]  Klaus Nehring,et al.  The structure of strategy-proof social choice - Part I: General characterization and possibility results on median spaces , 2007, J. Econ. Theory.