Non-commutative computations: lower bounds and polynomial identity testing

In the setting of non-commutative arithmetic computations, we define a class of circuits that generalize algebraic branching programs (ABP). This model is called unambiguous because it captures the polynomials in which all monomials are computed in a similar way (that is, all the parse trees are isomorphic). We show that unambiguous circuits of polynomial size can compute polynomials that require ABPs of exponential size, and that they are incomparable with skew circuits. Generalizing a result of Nisan [17] on ABPs, we provide an exact characterization of the complexity of any polynomial in our model, and use it to prove exponential lower bounds for explicit polynomials such as the determinant. Finally, we give a deterministic polynomial-time algorithm for polynomial identity testing (PIT) on unambiguous circuits over R and C, thus providing the largest class of circuits so far in a noncommutative setting for which we can derandomize PIT. ∗Univ Paris Diderot, Sorbonne Paris Cité, LIAFA, UMR 7089 CNRS, F-75205 Paris, France. Email: guillaume.lagarde@liafa.univ-paris-diderot.fr. †Univ Paris Diderot, Sorbonne Paris Cité, IMJ-PRG, UMR 7586 CNRS, Sorbonne Universités, UPMC Univ Paris 06, F-75013, Paris, France. Email: malod@math.univ-paris-diderot.fr. ‡Univ Paris Diderot, Sorbonne Paris Cité, LIAFA, UMR 7089 CNRS, F-75205 Paris, France. Email: sylvain.perifel@liafa.univ-paris-diderot.fr.

[1]  Richard J. Lipton,et al.  A Probabilistic Remark on Algebraic Program Testing , 1978, Inf. Process. Lett..

[2]  Zeev Dvir,et al.  Separating multilinear branching programs and formulas , 2012, STOC '12.

[3]  Vikraman Arvind,et al.  The Complexity of Bounded Register and Skew Arithmetic Computation , 2014, COCOON.

[4]  Guillaume Lagarde,et al.  Tight Bounds using Hankel Matrix for Arithmetic Circuits with Unique Parse Trees , 2018, Electron. Colloquium Comput. Complex..

[5]  Leslie G. Valiant,et al.  Completeness classes in algebra , 1979, STOC.

[6]  Avi Wigderson,et al.  Partial Derivatives in Arithmetic Complexity and Beyond , 2011, Found. Trends Theor. Comput. Sci..

[7]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[8]  Ramprasad Saptharishi Recent Progress on Arithmetic Circuit Lower Bounds , 2014, Bull. EATCS.

[9]  Alexander Barvinok,et al.  New Permanent Estimators via Non-Commutative Determinants , 2000 .

[10]  Guillaume Lagarde,et al.  Lower bounds for arithmetic circuits via the Hankel matrix , 2018, Electron. Colloquium Comput. Complex..

[11]  N. Nisan Lower Bounds for Non-Commutative Computation (Extended Abstract) , 1991, STOC 1991.

[12]  Ran Raz,et al.  Deterministic polynomial identity testing in non-commutative models , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[13]  Amir Yehudayoff,et al.  Arithmetic Circuits: A survey of recent results and open questions , 2010, Found. Trends Theor. Comput. Sci..

[14]  Steve Chien,et al.  Clifford algebras and approximating the permanent , 2003, J. Comput. Syst. Sci..

[15]  Avi Wigderson,et al.  Non-commutative circuits and the sum-of-squares problem , 2010, STOC '10.

[16]  Jack W. Carlyle,et al.  Realizations by Stochastic Finite Automata , 1971, J. Comput. Syst. Sci..

[17]  Guillaume Malod,et al.  Characterizing Valiant's algebraic complexity classes , 2008, J. Complex..

[18]  Hoeteck Wee,et al.  More on noncommutative polynomial identity testing , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[19]  Vikraman Arvind,et al.  Arithmetic Circuits and the Hadamard Product of Polynomials , 2009, FSTTCS.

[20]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[21]  Vikraman Arvind,et al.  New Results on Noncommutative and Commutative Polynomial Identity Testing , 2008, 2008 23rd Annual IEEE Conference on Computational Complexity.

[22]  Vikraman Arvind,et al.  The Complexity of Two Register and Skew Arithmetic Computation , 2014, Electron. Colloquium Comput. Complex..

[23]  Yotaro Kubo A Proof of Lemma 1 , 2014 .

[24]  J. M. Landsberg,et al.  An Overview of Mathematical Issues Arising in the Geometric Complexity Theory Approach to VP≠VNP , 2009, SIAM J. Comput..

[25]  Russell Impagliazzo,et al.  Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds , 2003, STOC '03.

[26]  Nutan Limaye,et al.  Lower Bounds for Non-Commutative Skew Circuits , 2016, Theory Comput..