Non-commutative computations: lower bounds and polynomial identity testing
暂无分享,去创建一个
Guillaume Lagarde | Guillaume Malod | Sylvain Perifel | Sylvain Perifel | Guillaume Lagarde | Guillaume Malod
[1] Richard J. Lipton,et al. A Probabilistic Remark on Algebraic Program Testing , 1978, Inf. Process. Lett..
[2] Zeev Dvir,et al. Separating multilinear branching programs and formulas , 2012, STOC '12.
[3] Vikraman Arvind,et al. The Complexity of Bounded Register and Skew Arithmetic Computation , 2014, COCOON.
[4] Guillaume Lagarde,et al. Tight Bounds using Hankel Matrix for Arithmetic Circuits with Unique Parse Trees , 2018, Electron. Colloquium Comput. Complex..
[5] Leslie G. Valiant,et al. Completeness classes in algebra , 1979, STOC.
[6] Avi Wigderson,et al. Partial Derivatives in Arithmetic Complexity and Beyond , 2011, Found. Trends Theor. Comput. Sci..
[7] Jacob T. Schwartz,et al. Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.
[8] Ramprasad Saptharishi. Recent Progress on Arithmetic Circuit Lower Bounds , 2014, Bull. EATCS.
[9] Alexander Barvinok,et al. New Permanent Estimators via Non-Commutative Determinants , 2000 .
[10] Guillaume Lagarde,et al. Lower bounds for arithmetic circuits via the Hankel matrix , 2018, Electron. Colloquium Comput. Complex..
[11] N. Nisan. Lower Bounds for Non-Commutative Computation (Extended Abstract) , 1991, STOC 1991.
[12] Ran Raz,et al. Deterministic polynomial identity testing in non-commutative models , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..
[13] Amir Yehudayoff,et al. Arithmetic Circuits: A survey of recent results and open questions , 2010, Found. Trends Theor. Comput. Sci..
[14] Steve Chien,et al. Clifford algebras and approximating the permanent , 2003, J. Comput. Syst. Sci..
[15] Avi Wigderson,et al. Non-commutative circuits and the sum-of-squares problem , 2010, STOC '10.
[16] Jack W. Carlyle,et al. Realizations by Stochastic Finite Automata , 1971, J. Comput. Syst. Sci..
[17] Guillaume Malod,et al. Characterizing Valiant's algebraic complexity classes , 2008, J. Complex..
[18] Hoeteck Wee,et al. More on noncommutative polynomial identity testing , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).
[19] Vikraman Arvind,et al. Arithmetic Circuits and the Hadamard Product of Polynomials , 2009, FSTTCS.
[20] Richard Zippel,et al. Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.
[21] Vikraman Arvind,et al. New Results on Noncommutative and Commutative Polynomial Identity Testing , 2008, 2008 23rd Annual IEEE Conference on Computational Complexity.
[22] Vikraman Arvind,et al. The Complexity of Two Register and Skew Arithmetic Computation , 2014, Electron. Colloquium Comput. Complex..
[23] Yotaro Kubo. A Proof of Lemma 1 , 2014 .
[24] J. M. Landsberg,et al. An Overview of Mathematical Issues Arising in the Geometric Complexity Theory Approach to VP≠VNP , 2009, SIAM J. Comput..
[25] Russell Impagliazzo,et al. Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds , 2003, STOC '03.
[26] Nutan Limaye,et al. Lower Bounds for Non-Commutative Skew Circuits , 2016, Theory Comput..