Detecting similar news tickers in the area of natural gas trading: improving decision support in uncertain situations

The volatility of the natural gas market founded a need for the ability to analyze upcoming events in real time in order to manage profits and risks for participants. News ticker provide information being of utmost importance for the analysis. The research presented among this paper describes features of a software prototype supporting the analytical price prognosis tasks for gas traders. By knowing market development at the time of a certain past situation, the outcome of that situation can be used to predict the future market development of a current analyzed situation with similar content. For that, similar situations have to be detected in order to reduce uncertainty about future. Fitting into design science, we use task-technology-fit theory and technology-acceptance-model to identify information needs and to evaluate the artifact. This novel approach serves as a further step to gain a decision support with integrated structured and unstructured data.

[1]  Agnar Aamodt,et al.  Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches , 1994, AI Commun..

[2]  C. J. van Rijsbergen,et al.  The use of hierarchic clustering in information retrieval , 1971, Inf. Storage Retr..

[3]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[4]  Ilze Zigurs,et al.  A test of task-technology fit theory for group support systems , 1999, DATB.

[5]  Bias and backwardation in natural gas futures prices , 2005 .

[6]  Juan Enrique Ramos,et al.  Using TF-IDF to Determine Word Relevance in Document Queries , 2003 .

[7]  Chi-Keung Woo,et al.  Market efficiency, cross hedging and price forecasts: California's natural-gas markets , 2006 .

[8]  Justus D. Naumann,et al.  Prototyping: the new paradigm for systems development , 1982 .

[9]  Alan R. Hevner,et al.  POSITIONING AND PRESENTING DESIGN SCIENCE RESEARCH FOR MAXIMUM IMPACT 1 , 2013 .

[10]  Jan Muntermann,et al.  State of the Art of Financial Decision Support Systems based on Problem, Requirement, Component and Evaluation Categories , 2012, Bled eConference.

[11]  Fred D. Davis Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology , 1989, MIS Q..

[12]  Venkataraman Ramesh,et al.  Improving information requirements determination: a cognitive perspective , 2002, Inf. Manag..

[13]  Pamela Hammers Specht,et al.  Job Characteristics as Indicants of CBIS Data Requirements , 1986, MIS Q..

[14]  M. Malliaris,et al.  Forecasting energy product prices , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[15]  Periklis Andritsos,et al.  Overview and semantic issues of text mining , 2007, SGMD.

[16]  Herbert A. Simon,et al.  The Sciences of the Artificial , 1970 .

[17]  Ujjwal Maulik,et al.  Validity index for crisp and fuzzy clusters , 2004, Pattern Recognit..

[18]  Alan R. Hevner,et al.  Design Science in Information Systems Research , 2004, MIS Q..

[19]  Gordon B. Davis,et al.  User Acceptance of Information Technology: Toward a Unified View , 2003, MIS Q..

[20]  I. S. Agbon,et al.  Predicting Oil and Gas Spot Prices Using Chaos Time Series Analysis and Fuzzy Neural Network Model. , 2003 .

[21]  Hsin Hsin Chang,et al.  Intelligent agent's technology characteristics applied to online auctions’ task: A combined model of TTF and TAM , 2008 .

[22]  Richard Leifer,et al.  Deep structures: Real information requirements determination , 1994, Inf. Manag..

[23]  Ian T. Nabney,et al.  Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models , 2010 .

[24]  E. R. Adagunodo,et al.  An Improved Data Clustering Algorithm for Mining Web Documents , 2010, 2010 International Conference on Computational Intelligence and Software Engineering.

[25]  Richard T. Watson,et al.  Analyzing the Past to Prepare for the Future: Writing a Literature Review , 2002, MIS Q..

[26]  Alan R. Hevner,et al.  The Information Systems Research Cycle , 2003, Computer.

[27]  Boqiang Lin,et al.  What causes price volatility and regime shifts in the natural gas market , 2013 .

[28]  Ian Alexander,et al.  An introduction to qualitative research , 2000, Eur. J. Inf. Syst..

[29]  Martin Bichler,et al.  Design science in information systems research , 2006, Wirtschaftsinf..

[30]  Jan Muntermann,et al.  Towards ubiquitous information supply for individual investors: A decision support system design , 2009, Decis. Support Syst..

[31]  Xian Shan,et al.  Modeling natural gas market volatility using GARCH with different distributions , 2013 .

[32]  L GoodhueDale,et al.  Task-technology fit and individual performance , 1995 .

[33]  Prerna Mishra Forecasting Natural Gas Price - Time Series and Nonparametric Approach , 2012 .

[34]  D. Lien,et al.  Can modeling the natural gas futures market as a threshold cointegrated system improve hedging and forecasting performance , 2003 .

[35]  Harris Cooper,et al.  Scientific Guidelines for Conducting Integrative Research Reviews , 1982 .

[36]  Samir Chatterjee,et al.  A Design Science Research Methodology for Information Systems Research , 2008 .

[37]  P. Hodges,et al.  Which way the natural gas price: an attempt to predict the direction of natural gas spot price movements using trader positions , 2001 .

[38]  Michael H. Breitner,et al.  Robust Decision Support Systems with Matrix Forecasts and Shared Layer Perceptrons for Finance and Other Applications , 2010, ICIS.

[39]  Carsten Felden,et al.  Big Data - A State-of-the-Art , 2012, AMCIS.

[40]  Markus Weinmann,et al.  Forecasting day ahead spot price movements of natural gas – An analysis of potential influence factors on basis of a NARX neural network , 2012, MKWI 2012.

[41]  Shankaran Sitarama,et al.  Efficient Cluster Representation in Similar Document Search , 2003, WWW.

[42]  Yiu-ming Cheung,et al.  k*-Means: A new generalized k-means clustering algorithm , 2003, Pattern Recognit. Lett..

[43]  K. Premalatha,et al.  A Literature Review on Document Clustering , 2010 .

[44]  Francesco Barcellona,et al.  Subband prediction of energy commodity prices , 2012, 2012 IEEE 13th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC).

[45]  Paul Jen-Hwa Hu,et al.  Knowledge mapping for rapidly evolving domains: A design science approach , 2011, Decis. Support Syst..

[46]  Michael Heuterkes,et al.  Die Regulierung von Gas- und Strommärkten in Deutschland , 2008 .

[47]  Axel Tuma,et al.  An Environmental Management Information System for Closing Knowledge Gaps in Corporate Sustainable Decision-Making , 2014, ICIS.

[48]  Xiaojun Wan,et al.  A novel document similarity measure based on earth mover's distance , 2007, Inf. Sci..

[49]  S. Linn,et al.  Natural gas prices and the gas storage report: Public news and volatility in energy futures markets , 2004 .

[50]  Narges Salehnia,et al.  Forecasting natural gas spot prices with nonlinear modeling using Gamma test analysis , 2013 .

[51]  Alan R. Dennis,et al.  Understanding Fit and Appropriation Effects in Group Support Systems via Meta-Analysis , 2001, MIS Q..

[52]  Stefan Lessmann,et al.  Decision Support in Car Leasing: a Forecasting Model for Residual Value Estimation , 2010, ICIS.

[53]  Andreas Totok,et al.  Modellierung von OLAP- und Data-Warehouse-Systemen , 2000 .

[54]  P. Mishra Natural Gas Price Forecasting: A Novel Approach , 2013 .

[55]  Dale Goodhue,et al.  Task-Technology Fit and Individual Performance , 1995, MIS Q..

[56]  Dale Goodhue,et al.  I/S attitudes: toward theoretical and definitional clarity , 2013, DATB.

[57]  Stefan Trück,et al.  Vorsicht Hochspannung! - Risikomanagement in Energiemärkten (Teil II) Modellierung von Strompreisen , 2004 .