Isogeometric finite element data structures based on Bézier extraction of NURBS

We present the B'ezier extraction operator and isogeometric Bézier elements for non‐uniform rational B‐Spline (NURBS)‐based isogeometric analysis. The Bézier extraction operator allows numerical integration of smooth functions to be performed on C0 Bézier elements. We show how the Bézier extraction operator is computed for NURBS. We then show that the extraction operator and Bézier elements provide an element structure for isogeometric analysis that can be easily incorporated into existing finite element codes, without any changes to element form and assembly algorithms, and standard data processing arrays. All significant changes may be implemented in a shape function subroutine. Copyright © 2010 John Wiley & Sons, Ltd.

[1]  Thomas W. Sederberg,et al.  Knot intervals and multi-degree splines , 2003, Comput. Aided Geom. Des..

[2]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[3]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[4]  Tom Lyche,et al.  T-spline simplification and local refinement , 2004, ACM Trans. Graph..

[5]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[6]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[7]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[8]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[9]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[10]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[11]  G. Sangalli,et al.  A fully ''locking-free'' isogeometric approach for plane linear elasticity problems: A stream function formulation , 2007 .

[12]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[13]  Hongwei Lin,et al.  Watertight trimmed NURBS , 2008, ACM Trans. Graph..

[14]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[15]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[16]  T. Hughes,et al.  B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .

[17]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[18]  G. T. Finnigan Arbitrary Degree T-Splines , 2008 .

[19]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[20]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[21]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[22]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[23]  I. Akkerman,et al.  Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method , 2010, J. Comput. Phys..

[24]  F. Auricchio,et al.  The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations , 2010 .

[25]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[26]  T. Hughes,et al.  Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations , 2010 .

[27]  T. Belytschko,et al.  A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM , 2010 .

[28]  Fu Xiaojin,et al.  Isogeometric Analysis Toward Integration of CAD and CAE , 2011 .

[29]  Thomas J. R. Hughes,et al.  A large deformation, rotation-free, isogeometric shell , 2011 .

[30]  Thomas J. R. Hughes,et al.  An isogeometric approach to cohesive zone modeling , 2011 .

[31]  Thomas J. R. Hughes,et al.  An isogeometric analysis approach to gradient damage models , 2011 .

[32]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .