Gromov-Witten theory of $\mathrm{K3} \times \mathbb{P}^1$ and quasi-Jacobi forms

Let $S$ be a K3 surface with primitive curve class $\beta$. We solve the relative Gromov-Witten theory of $S \times \mathbb{P}^1$ in classes $(\beta,1)$ and $(\beta,2)$. The generating series are quasi-Jacobi forms and equal to a corresponding series of genus $0$ Gromov-Witten invariants on the Hilbert scheme of points of $S$. This proves a special case of a conjecture of Pandharipande and the author. The new geometric input of the paper is a genus bound for hyperelliptic curves on K3 surfaces proven by Ciliberto and Knutsen. By exploiting various formal properties we find that a key generating series is determined by the very first few coefficients. Let $E$ be an elliptic curve. As collorary of our computations we prove that Gromov-Witten invariants of $S \times E$ in classes $(\beta,1)$ and $(\beta,2)$ are coefficients of the reciprocal of the Igusa cusp form. We also calculate several linear Hodge integrals on the moduli space of stable maps to a K3 surface and the Gromov-Witten invariants of an abelian threefold in classes of type $(1,1,d)$.

[1]  J. Bryan,et al.  Curve counting on abelian surfaces and threefolds , 2015, Algebraic Geometry.

[2]  G. Oberdieck Gromov–Witten invariants of the Hilbert schemes of points of a K3 surface , 2014, 1406.1139.

[3]  G. Oberdieck On reduced stable pair invariants , 2016, 1605.04631.

[4]  R. Pandharipande,et al.  Curve Counting on K3 × E, The Igusa Cusp Form χ10, and Descendent Integration , 2016 .

[5]  J. Bryan The Donaldson-Thomas theory of $K3\times E$ via the topological vertex , 2015, 1504.02920.

[6]  J. Bruinier,et al.  KUDLA’S MODULARITY CONJECTURE AND FORMAL FOURIER–JACOBI SERIES , 2014, Forum of Mathematics, Pi.

[7]  R. Pandharipande,et al.  Gromov–Witten/pairs descendent correspondence for toric 3–folds , 2012, 1203.0468.

[8]  Richard P. Thomas,et al.  Reduced classes and curve counting on surfaces I: theory , 2011, 1112.3069.

[9]  Don Zagier,et al.  The Theory of Jacobi Forms , 2013 .

[10]  R. Pandharipande,et al.  Gromov-Witten/pairs correspondence for the quintic 3-fold , 2012, 1206.5490.

[11]  C. Ciliberto,et al.  On k-gonal loci in Severi varieties on general K3 surfaces and rational curves on hyperkähler manifolds , 2012, 1204.4838.

[12]  R. Pandharipande,et al.  Tautological and non-tautological cohomology of the moduli space of curves , 2011, 1101.5489.

[13]  Richard P. Thomas,et al.  Curves on K3 surfaces and modular forms , 2010, 1001.2719.

[14]  A. Libgober Elliptic genera, real algebraic varieties and quasi-Jacobi forms , 2009, 0904.1026.

[15]  F. Pellarin,et al.  On certain families of Drinfeld quasi-modular forms , 2009, 0902.0164.

[16]  Richard P. Thomas,et al.  Curve counting via stable pairs in the derived category , 2007, 0707.2348.

[17]  Li Jun STABLE MORPHISMS TO SINGULAR SCHEMES AND RELATIVE STABLE MORPHISMS , 2008 .

[18]  D. Maulik Gromov-Witten theory of A_n-resolutions , 2008, 0802.2681.

[19]  Richard P. Thomas,et al.  Stable pairs and BPS invariants , 2007, 0711.3899.

[20]  M. Kaneko,et al.  ON EXTREMAL QUASIMODULAR FORMS , 2006 .

[21]  O. Debarre Complex Tori and Abelian Varieties , 2005 .

[22]  R. Pandharipande,et al.  A topological view of Gromov-Witten theory , 2004, math/0412503.

[23]  A. Okounkov,et al.  Quantum cohomology of the Hilbert scheme of points in the plane , 2004, math/0411210.

[24]  M. Lehn Lectures on Hilbert schemes , 2004 .

[25]  R. Vakil,et al.  Relative virtual localization and vanishing of tautological classes on moduli spaces of curves , 2003, math/0309227.

[26]  A. Okounkov,et al.  Virasoro constraints for target curves , 2003, math/0308097.

[27]  R. Pandharipande,et al.  Relative maps and tautological classes , 2003, math/0304485.

[28]  H. Lange,et al.  Curves of genus g on an abelian variety of dimension g , 2002, math/0206247.

[29]  Jun Li A Degeneration Formula of GW-Invariants , 2001, math/0110113.

[30]  Xi Chen A simple proof that rational curves on K3 are nodal , 2000, math/0011190.

[31]  N. Saradha Transcendence measure for η/ω , 2000 .

[32]  S. Katz,et al.  M theory, topological strings and spinning black holes , 1999, hep-th/9910181.

[33]  Arnaud Beauville,et al.  Counting rational curves on ${\text{K3}}$ surfaces , 1999 .

[34]  -. Max-Planck,et al.  M. Theory , 1998 .

[35]  J. Bryan,et al.  The enumerative geometry of K3 surfaces and modular forms , 1997, alg-geom/9711031.

[36]  R. Pandharipande,et al.  Localization of virtual classes , 1997, alg-geom/9708001.

[37]  A. Beauville Counting rational curves on K3 surfaces , 1997, alg-geom/9701019.

[38]  L. Göttsche The Betti numbers of the Hilbert scheme of points on a smooth projective surface , 1990 .