On the Absolutely Continuous Spectrum of Generalized Indefinite Strings

We investigate absolutely continuous spectrum of generalized indefinite strings. By following an approach of Deift and Killip, we establish stability of the absolutely continuous spectra of two model examples of generalized indefinite strings under rather wide perturbations. In particular, one of these results allows us to prove that the absolutely continuous spectrum of the isospectral problem associated with the conservative Camassa–Holm flow in the dispersive regime is essentially supported on the interval \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[1/4,\infty )$$\end{document}[1/4,∞).

[1]  Roman Bessonov,et al.  De Branges canonical systems with finite logarithmic integral , 2019, Analysis & PDE.

[2]  Spectral Properties of Schr\"odinger Operators with Decaying Potentials , 2005, math/0509668.

[3]  H. Bauer Measure and integration theory , 2001 .

[4]  K. Schmidt,et al.  Absolutely continuous spectrum of Dirac operators with square-integrable potentials , 2014, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[5]  B. Vainberg,et al.  First KdV Integrals¶and Absolutely Continuous Spectrum¶for 1-D Schrödinger Operator , 2001 .

[6]  R. Romanov Canonical systems and de Branges spaces , 2014, 1408.6022.

[7]  Tosio Kato Perturbation theory for linear operators , 1966 .

[8]  A. Kostenko,et al.  1-D Schr\"odinger operators with local point interactions: a review , 2013, 1303.4055.

[9]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[10]  R. Ivanov Extended Camassa-Holm Hierarchy and Conserved Quantities , 2006, nlin/0601066.

[11]  Jonathan Eckhardt,et al.  The inverse spectral problem for indefinite strings , 2014, 1409.0139.

[12]  B. Simon Tosio Kato’s work on non-relativistic quantum mechanics: part 2 , 2018 .

[13]  B. M. Brown,et al.  Scattering and inverse scattering for a left-definite Sturm–Liouville problem , 2012 .

[14]  V. Zakharov,et al.  Korteweg-de Vries equation: A completely integrable Hamiltonian system , 1971 .

[15]  B. Simon SCHRODINGER OPERATORS IN THE TWENTY-FIRST CENTURY , 1986 .

[16]  Jonathan Eckhardt,et al.  A Lagrangian View on Complete Integrability of the Two-Component Camassa–Holm System , 2016, 1605.05865.

[17]  Sergio Albeverio,et al.  Solvable Models in Quantum Mechanics , 1988 .

[18]  Jonathan Eckhardt,et al.  Quadratic operator pencils associated with the conservative Camassa-Holm flow , 2014, 1406.3703.

[19]  A. Kostenko,et al.  Spectral Theory of Semibounded Schrödinger Operators with δ′-Interactions , 2012, 1212.1691.

[20]  G. Teschl,et al.  One-dimensional Schrödinger operators with δ′-interactions on Cantor-type sets , 2014, 1401.7581.

[21]  G. Teschl,et al.  Sturm-Liouville operators with measure-valued coefficients , 2011, 1105.3755.

[22]  C. Remling Spectral Theory of Canonical Systems , 2018 .

[23]  A. Bressan,et al.  Global Conservative Solutions of the Camassa–Holm Equation , 2007 .

[24]  Youjin Zhang,et al.  A Two-component Generalization of the Camassa-Holm Equation and its Solutions , 2005, nlin/0501028.

[25]  B. Simon Tosio Kato’s work on non-relativistic quantum mechanics: part 2 , 2018, Bulletin of Mathematical Sciences.

[26]  W. Rudin Real and complex analysis , 1968 .

[27]  Jonathan Eckhardt,et al.  An Isospectral Problem for Global Conservative Multi-Peakon Solutions of the Camassa–Holm Equation , 2014, 1406.3702.

[28]  James Rovnyak,et al.  Topics in Hardy Classes and Univalent Functions , 1994 .

[29]  J. K. Hunter,et al.  Measure Theory , 2007 .

[30]  R. Killip Perturbations of one-dimensional Schrodinger operators preserving the absolutely continuous spectrum , 2002 .

[31]  A. Kostenko The similarity problem for indefinite Sturm–Liouville operators and the HELP inequality , 2012, 1207.2586.

[32]  Darryl D. Holm,et al.  Two-component CH system: inverse scattering, peakons and geometry , 2010, Inverse Problems.

[33]  H. Holden,et al.  Global Conservative Solutions of the Camassa–Holm Equation—A Lagrangian Point of View , 2007 .

[34]  A. Rybkin On the spectral L2 conjecture, 3/2-Lieb-Thirring inequality and distributional potentials , 2005 .

[35]  Jonathan Eckhardt Direct and inverse spectral theory of singular left-definite Sturm–Liouville operators☆ , 2011, 1110.5195.

[36]  H. Holden,et al.  Global Solutions for the Two-Component Camassa–Holm System , 2011, 1111.3188.

[37]  Percy Deift,et al.  On the Absolutely Continuous Spectrum¶of One-Dimensional Schrödinger Operators¶with Square Summable Potentials , 1999 .

[38]  B. Simon Tosio Kato’s work on non-relativistic quantum mechanics: part 1 , 2017, 1710.06999.

[39]  B. M. Brown,et al.  Inverse Spectral and Scattering Theory for the Half-Line Left-Definite Sturm-Liouville Problem , 2009, SIAM J. Math. Anal..

[40]  S. Denisov,et al.  A spectral Szegő theorem on the real line , 2017, Advances in Mathematics.

[41]  Rossen I. Ivanov,et al.  On an integrable two-component Camassa–Holm shallow water system , 2008, 0806.0868.

[42]  A. Constantin,et al.  Poisson Structure and Action-Angle Variables for the Camassa–Holm Equation , 2006, nlin/0602049.

[43]  Edwin Hewitt,et al.  Real And Abstract Analysis , 1967 .

[44]  A. Constantin On the scattering problem for the Camassa-Holm equation , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[45]  A. Fleige Spectral Theory of Indefinite Krein-Feller Differential Operators , 1996 .

[46]  Jonathan Eckhardt,et al.  The Classical Moment Problem and Generalized Indefinite Strings , 2017, 1707.08394.

[47]  Jonathan Eckhardt The Inverse Spectral Transform for the Conservative Camassa–Holm Flow with Decaying Initial Data , 2015, 1510.04916.