On the Absolutely Continuous Spectrum of Generalized Indefinite Strings
暂无分享,去创建一个
[1] Roman Bessonov,et al. De Branges canonical systems with finite logarithmic integral , 2019, Analysis & PDE.
[2] Spectral Properties of Schr\"odinger Operators with Decaying Potentials , 2005, math/0509668.
[3] H. Bauer. Measure and integration theory , 2001 .
[4] K. Schmidt,et al. Absolutely continuous spectrum of Dirac operators with square-integrable potentials , 2014, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[5] B. Vainberg,et al. First KdV Integrals¶and Absolutely Continuous Spectrum¶for 1-D Schrödinger Operator , 2001 .
[6] R. Romanov. Canonical systems and de Branges spaces , 2014, 1408.6022.
[7] Tosio Kato. Perturbation theory for linear operators , 1966 .
[8] A. Kostenko,et al. 1-D Schr\"odinger operators with local point interactions: a review , 2013, 1303.4055.
[9] Darryl D. Holm,et al. An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.
[10] R. Ivanov. Extended Camassa-Holm Hierarchy and Conserved Quantities , 2006, nlin/0601066.
[11] Jonathan Eckhardt,et al. The inverse spectral problem for indefinite strings , 2014, 1409.0139.
[12] B. Simon. Tosio Kato’s work on non-relativistic quantum mechanics: part 2 , 2018 .
[13] B. M. Brown,et al. Scattering and inverse scattering for a left-definite Sturm–Liouville problem , 2012 .
[14] V. Zakharov,et al. Korteweg-de Vries equation: A completely integrable Hamiltonian system , 1971 .
[15] B. Simon. SCHRODINGER OPERATORS IN THE TWENTY-FIRST CENTURY , 1986 .
[16] Jonathan Eckhardt,et al. A Lagrangian View on Complete Integrability of the Two-Component Camassa–Holm System , 2016, 1605.05865.
[17] Sergio Albeverio,et al. Solvable Models in Quantum Mechanics , 1988 .
[18] Jonathan Eckhardt,et al. Quadratic operator pencils associated with the conservative Camassa-Holm flow , 2014, 1406.3703.
[19] A. Kostenko,et al. Spectral Theory of Semibounded Schrödinger Operators with δ′-Interactions , 2012, 1212.1691.
[20] G. Teschl,et al. One-dimensional Schrödinger operators with δ′-interactions on Cantor-type sets , 2014, 1401.7581.
[21] G. Teschl,et al. Sturm-Liouville operators with measure-valued coefficients , 2011, 1105.3755.
[22] C. Remling. Spectral Theory of Canonical Systems , 2018 .
[23] A. Bressan,et al. Global Conservative Solutions of the Camassa–Holm Equation , 2007 .
[24] Youjin Zhang,et al. A Two-component Generalization of the Camassa-Holm Equation and its Solutions , 2005, nlin/0501028.
[25] B. Simon. Tosio Kato’s work on non-relativistic quantum mechanics: part 2 , 2018, Bulletin of Mathematical Sciences.
[26] W. Rudin. Real and complex analysis , 1968 .
[27] Jonathan Eckhardt,et al. An Isospectral Problem for Global Conservative Multi-Peakon Solutions of the Camassa–Holm Equation , 2014, 1406.3702.
[28] James Rovnyak,et al. Topics in Hardy Classes and Univalent Functions , 1994 .
[29] J. K. Hunter,et al. Measure Theory , 2007 .
[30] R. Killip. Perturbations of one-dimensional Schrodinger operators preserving the absolutely continuous spectrum , 2002 .
[31] A. Kostenko. The similarity problem for indefinite Sturm–Liouville operators and the HELP inequality , 2012, 1207.2586.
[32] Darryl D. Holm,et al. Two-component CH system: inverse scattering, peakons and geometry , 2010, Inverse Problems.
[33] H. Holden,et al. Global Conservative Solutions of the Camassa–Holm Equation—A Lagrangian Point of View , 2007 .
[34] A. Rybkin. On the spectral L2 conjecture, 3/2-Lieb-Thirring inequality and distributional potentials , 2005 .
[35] Jonathan Eckhardt. Direct and inverse spectral theory of singular left-definite Sturm–Liouville operators☆ , 2011, 1110.5195.
[36] H. Holden,et al. Global Solutions for the Two-Component Camassa–Holm System , 2011, 1111.3188.
[37] Percy Deift,et al. On the Absolutely Continuous Spectrum¶of One-Dimensional Schrödinger Operators¶with Square Summable Potentials , 1999 .
[38] B. Simon. Tosio Kato’s work on non-relativistic quantum mechanics: part 1 , 2017, 1710.06999.
[39] B. M. Brown,et al. Inverse Spectral and Scattering Theory for the Half-Line Left-Definite Sturm-Liouville Problem , 2009, SIAM J. Math. Anal..
[40] S. Denisov,et al. A spectral Szegő theorem on the real line , 2017, Advances in Mathematics.
[41] Rossen I. Ivanov,et al. On an integrable two-component Camassa–Holm shallow water system , 2008, 0806.0868.
[42] A. Constantin,et al. Poisson Structure and Action-Angle Variables for the Camassa–Holm Equation , 2006, nlin/0602049.
[43] Edwin Hewitt,et al. Real And Abstract Analysis , 1967 .
[44] A. Constantin. On the scattering problem for the Camassa-Holm equation , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[45] A. Fleige. Spectral Theory of Indefinite Krein-Feller Differential Operators , 1996 .
[46] Jonathan Eckhardt,et al. The Classical Moment Problem and Generalized Indefinite Strings , 2017, 1707.08394.
[47] Jonathan Eckhardt. The Inverse Spectral Transform for the Conservative Camassa–Holm Flow with Decaying Initial Data , 2015, 1510.04916.