A Techno-Economic Computational Tool for Power Generation Project Assessments and Life Cycle Risk Management

The growing desire for sponsors of power generation projects to share risk with the lenders has promoted the use of computational tools, simulating and evaluating from a techno-economic viewpoint long-term, high-risk projects. Such models need to include reliable engine diagnostics, life-cycle costing and risk analysis technique.This paper presents a Decision Support System (DSS) for the assessment of power generation projects using industrial gas turbines. The software, programmed in Visual Basic in Excel, runs the object-oriented software Pythia which has been developed by the Department of Propulsion, Power and Automotive Engineering at Cranfield University and which can perform gas turbine performance calculations, including off-design conditions, with or without degradation effects providing thus very reliable engine diagnostics. Moreover, a life cycle cost, assessed using manufacturer methodology for instance, can be integrated into the economic model. The degree of uncertainty relating to technical and economic factors is assessed using a normal distribution and the level of risk can then be evaluated using a risk analysis technique based upon the Monte Carlo Method. The DSS therefore provides charts and result tables to support the decision making, allowing the user to achieve a good level of confidence using new techniques of risk management.Copyright © 1997 by ASME