A TRUST REGION METHOD FOR THE TRANSPORTATION NETWORK OPTIMIZATION PROBLEMS WITH USER EQUILIBRIUM CONSTRAINTS

[1]  Nicholas I. M. Gould,et al.  Sensitivity of trust-region algorithms to their parameters , 2005, 4OR.

[2]  Michal Kočvara,et al.  Optimization problems with equilibrium constraints and their numerical solution , 2004, Math. Program..

[3]  Michael Patriksson,et al.  A Mathematical Model and Descent Algorithm for Bilevel Traffic Management , 2002, Transp. Sci..

[4]  Masao Fukushima,et al.  An Implementable Active-Set Algorithm for Computing a B-Stationary Point of a Mathematical Program with Linear Complementarity Constraints , 2002, SIAM J. Optim..

[5]  Patrice Marcotte,et al.  A trust region algorithm for nonlinear bilevel programming , 2001, Oper. Res. Lett..

[6]  Hai Yang,et al.  An equivalent continuously differentiable model and a locally convergent algorithm for the continuous network design problem , 2001 .

[7]  J. J. Ye Constraint Qualifications and Necessary Optimality Conditions for Optimization Problems with Variational Inequality Constraints , 2000, SIAM J. Optim..

[8]  Qiang Meng,et al.  Bilevel transportation modeling and optimization , 2000 .

[9]  S. Scholtes,et al.  Exact Penalization of Mathematical Programs with Equilibrium Constraints , 1999 .

[10]  Michal Kočvara,et al.  Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .

[11]  J. Bard,et al.  Nondifferentiable and Two-Level Mathematical Programming , 1996 .

[12]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[13]  William H. K. Lam,et al.  Optimal road tolls under conditions of queueing and congestion , 1996 .

[14]  Athanasios Migdalas,et al.  Bilevel programming in traffic planning: Models, methods and challenge , 1995, J. Glob. Optim..

[15]  Ya-Xiang Yuan,et al.  On the convergence of a new trust region algorithm , 1995 .

[16]  Yang Chen,et al.  Bilevel programming problems: analysis, algorithms and applications , 1994 .

[17]  M. Florian,et al.  THE NONLINEAR BILEVEL PROGRAMMING PROBLEM: FORMULATIONS, REGULARITY AND OPTIMALITY CONDITIONS , 1993 .

[18]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[19]  M. Florian,et al.  A COORDINATE DESCENT METHOD FOR THE BILEVEL O-D MATRIX ADJUSTMENT PROBLEM , 1992 .

[20]  Yosef Sheffi,et al.  Urban Transportation Networks: Equilibrium Analysis With Mathematical Programming Methods , 1985 .

[21]  S Nguyen,et al.  ESTIMATING ORIGIN DESTINATION MATRICES FROM OBSERVED FLOWS , 1984 .

[22]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[23]  J. Gauvin,et al.  Differential properties of the marginal function in mathematical programming , 1982 .

[24]  Larry J. LeBlanc,et al.  CONTINUOUS EQUILIBRIUM NETWORK DESIGN MODELS , 1979 .

[25]  M. A. Hall,et al.  Properties of the Equilibrium State in Transportation Networks , 1978 .