Two theorems about maximal Cohen–Macaulay modules
暂无分享,去创建一个
[1] R. Y. Sharp. KÄHLER DIFFERENTIALS (Vieweg Advanced Lectures in Mathematics) , 1988 .
[2] Craig Huneke,et al. Tight closure, invariant theory, and the Briançon-Skoda theorem , 1990 .
[3] KEN-ICHI Yoshida,et al. Hilbert-Kunz Multiplicity of Two-Dimensional Local Rings , 2001, Nagoya Mathematical Journal.
[4] J. Herzog. Ringe mit nur endlich vielen Isomorphieklassen von maximalen, unzerlegbaren Cohen-Macaulay-Moduln , 1978 .
[5] A. Duncan. COHEN‐MACAULAY MODULES OVER COHEN‐MACAULAY RINGS , 1992 .
[6] D. Kirby,et al. COMMUTATIVE RING THEORY (Cambridge Studies in Advanced Mathematics 8) , 1988 .
[7] Miles Reid,et al. Commutative Ring Theory , 1989 .
[8] R. Wiegand. Local Rings of Finite Cohen–Macaulay Type☆☆☆ , 1998 .
[9] Y. Yoshino,et al. Cohen-Macaulay modules over Cohen-Macaulay rings , 1990 .
[10] G. Seibert. The Hilbert-Kunz function of rings of finite Cohen-Macaulay type , 1997 .
[11] Dan Smith. A variation on a theme of Vasconcelos , 2000 .
[12] Jiirgen Herzog,et al. Ein Cohen-Macaulay-Kriterium mit Anwendungen auf den Konormalenmodul und den Differentialmodul , 1978 .
[13] C. Huneke,et al. Unmixed local rings with minimal Hilbert-Kunz multiplicity are regular , 2001, math/0209291.
[14] KEN-ICHI Yoshida,et al. Hilbert–Kunz Multiplicity and an Inequality between Multiplicity and Colength☆ , 2000 .
[15] Maurice Auslander,et al. Isolated singularities and existence of almost split sequences , 1986 .
[16] R. Buchweitz. Contributions à la théorie des singularités : Déformations de Diagrammes, Déploiements et Singularités très rigides, Liaison algébrique , 1981 .
[17] C. Huneke. Tight closure and its applications , 1996 .
[18] Karen E. Smith,et al. Simplicity of Rings of Differential Operators in Prime Characteristic , 1997, math/0209275.
[19] Graham J. Leuschke,et al. Ascent of Finite Cohen–Macaulay Type , 2000 .
[20] D. Eisenbud. Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .