Two theorems about maximal Cohen–Macaulay modules

Abstract. This paper contains two theorems concerning the theory of maximal Cohen–Macaulay modules. The first theorem proves that certain Ext groups between maximal Cohen–Macaulay modules M and N must have finite length, provided only finitely many isomorphism classes of maximal Cohen–Macaulay modules exist having ranks up to the sum of the ranks of M and N. This has several corollaries. In particular it proves that a Cohen–Macaulay lo cal ring of finite Cohen–Macaulay type has an isolated singularity. A well-known theorem of Auslander gives the same conclusion but requires that the ring be Henselian. Other corollaries of our result include statements concerning when a ring is Gorenstein or a complete intersection on the punctured spectrum, and the recent theorem of Leuschke and Wiegand that the completion of an excellent Cohen–Macaulay local ring of finite Cohen–Macaulay type is again of finite Cohen–Macaulay type . The second theorem proves that a complete local Gorenstein domain of positive characteristic p and dimension d is F-rational if and only if the number of copies of R splitting out of $R^{1/p^e}$ divided by $p^{de}$ has a positive limit. This result relates to work of Smith and Van den Bergh. We call this limit the F-signature of the ring and give some of its properties.

[1]  R. Y. Sharp KÄHLER DIFFERENTIALS (Vieweg Advanced Lectures in Mathematics) , 1988 .

[2]  Craig Huneke,et al.  Tight closure, invariant theory, and the Briançon-Skoda theorem , 1990 .

[3]  KEN-ICHI Yoshida,et al.  Hilbert-Kunz Multiplicity of Two-Dimensional Local Rings , 2001, Nagoya Mathematical Journal.

[4]  J. Herzog Ringe mit nur endlich vielen Isomorphieklassen von maximalen, unzerlegbaren Cohen-Macaulay-Moduln , 1978 .

[5]  A. Duncan COHEN‐MACAULAY MODULES OVER COHEN‐MACAULAY RINGS , 1992 .

[6]  D. Kirby,et al.  COMMUTATIVE RING THEORY (Cambridge Studies in Advanced Mathematics 8) , 1988 .

[7]  Miles Reid,et al.  Commutative Ring Theory , 1989 .

[8]  R. Wiegand Local Rings of Finite Cohen–Macaulay Type☆☆☆ , 1998 .

[9]  Y. Yoshino,et al.  Cohen-Macaulay modules over Cohen-Macaulay rings , 1990 .

[10]  G. Seibert The Hilbert-Kunz function of rings of finite Cohen-Macaulay type , 1997 .

[11]  Dan Smith A variation on a theme of Vasconcelos , 2000 .

[12]  Jiirgen Herzog,et al.  Ein Cohen-Macaulay-Kriterium mit Anwendungen auf den Konormalenmodul und den Differentialmodul , 1978 .

[13]  C. Huneke,et al.  Unmixed local rings with minimal Hilbert-Kunz multiplicity are regular , 2001, math/0209291.

[14]  KEN-ICHI Yoshida,et al.  Hilbert–Kunz Multiplicity and an Inequality between Multiplicity and Colength☆ , 2000 .

[15]  Maurice Auslander,et al.  Isolated singularities and existence of almost split sequences , 1986 .

[16]  R. Buchweitz Contributions à la théorie des singularités : Déformations de Diagrammes, Déploiements et Singularités très rigides, Liaison algébrique , 1981 .

[17]  C. Huneke Tight closure and its applications , 1996 .

[18]  Karen E. Smith,et al.  Simplicity of Rings of Differential Operators in Prime Characteristic , 1997, math/0209275.

[19]  Graham J. Leuschke,et al.  Ascent of Finite Cohen–Macaulay Type , 2000 .

[20]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .