Estimation of semivariogram parameters and evaluation of the effects of data sparsity

Semivariogram parameters are estimated by a weighted least-squares method and a jackknife kriging method. The weighted least-squares method is investigated by differing the lag increment and maximum lag used in the fit. The jackknife kriging method minimizes the variance of the jackknifing error as a function of semivariogram parameters. The effects of data sparsity and the presence of a trend are investigated by using 400-, 200-, and 100-point synthetic data sets. When the two methods yield significantly different results, more data may be needed to determine reliably the semivariogram parameters, or a trend may be present in the data.