A multiscale approximation scheme for explicit model predictive control with stability, feasibility, and performance guarantees

In this paper, an algorithm is introduced based on classical wavelet multiresolution analysis that returns a low complexity explicit model predictive control law built on a hierarchy of second order interpolating wavelets. It is proven that the resulting interpolation is everywhere feasible. Further, tests to confirm stability and to compute a bound on the performance loss are introduced. Since the controller approximation is built on a gridded hierarchy, the evaluation of the control law in real-time systems is naturally fast and runs in a bounded logarithmic time. A simple example is provided which both illustrates the approach and motivates further research in this direction.

[1]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[2]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[3]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[4]  George Havas,et al.  An Optimal Algorithm for Generating Minimal Perfect Hash Functions , 1992, Inf. Process. Lett..

[5]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[6]  David Q. Mayne,et al.  Correction to "Constrained model predictive control: stability and optimality" , 2001, Autom..

[7]  Manfred Morari,et al.  Multiparametric Linear Programming with Applications to Control , 2007, Eur. J. Control.

[8]  David L. Donoho,et al.  Interpolating Wavelet Transforms , 1992 .

[9]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[10]  Alberto Bemporad,et al.  An Algorithm for Approximate Multiparametric Convex Programming , 2006, Comput. Optim. Appl..

[11]  Gilles Deslauriers,et al.  Symmetric iterative interpolation processes , 1989 .

[12]  D. Q. Mayne,et al.  Suboptimal model predictive control (feasibility implies stability) , 1999, IEEE Trans. Autom. Control..

[13]  Tor Arne Johansen,et al.  Approximate explicit constrained linear model predictive control via orthogonal search tree , 2003, IEEE Trans. Autom. Control..

[14]  T. Johansen,et al.  On explicit suboptimal LQR with state and input constraints , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[15]  Renzo Sprugnoli,et al.  Perfect hashing functions , 1977, Commun. ACM.

[16]  Ronald L. Rivest,et al.  Introduction to Algorithms, Second Edition , 2001 .

[17]  Bo Lincoln,et al.  Relaxing dynamic programming , 2006, IEEE Transactions on Automatic Control.

[18]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[19]  Manfred Morari,et al.  Polytopic Approximation of Explicit Model Predictive Controllers , 2010, IEEE Transactions on Automatic Control.

[20]  János Komlós,et al.  Storing a sparse table with O(1) worst case access time , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).