A Topological Hierarchy of Molecular Chirality and other Tidbits in Topological Stereochemistry

Chemists have long been intrigued by the molecular basis of isomerism. Indeed, much of the powerful paradigm of structure based upon the molecular graph was first invented to explain isomerism, including the classifications used in modern stereochemistry. Thus, constitutional isomers describe pairs of isomeric molecular structures possessing non-homeomorphic molecular graphs, while the classical stereoisomers (enantiomers and diastereomers) possess molecular graphs which are homeomorphic and also homeotopic (interconvertable by continuous deformation in 3-space). This means that classical stereoisomerism is derived from the Euclidean properties of molecular graphs, being a manifestation of some kind of molecular rigidity.

[1]  J. Lehn,et al.  Cryptates. XVII. Synthesis and cryptate complexes of a spheroidal macrotricyclic ligand with octahedrotetrahedral coordination , 1975 .

[2]  E. Flapan Rigid and nonrigid achirality , 1987 .

[3]  D. Walba,et al.  The thyme polyethers , 1986 .

[4]  D. Walba,et al.  The thyme polyethers: An approach to the synthesis of a molecular knotted ring , 1986 .

[5]  K. Humbel,et al.  Chemical Applications of Topology and Graph Theory, R.B. King (Ed.). Elsevier Science Publishers, Amsterdam (1983), (ISBN 0-444-42244-7). XII + 494 p. Price Dfl. 275.00 , 1985 .

[6]  K. Mislow,et al.  MOLECULAR DISSYMMETRY AND OPTICAL INACTIVITY , 1955 .

[7]  D. Hrovat,et al.  Ab initio calculations of the relative energies of 1,2-, 1,3-, and 1,4-dehydrocubane: prediction of dominant through-bond interaction in 1,4-dehydrocubane , 1990 .

[8]  J. Sauvage,et al.  Ein topologisch chiraler [2]Catenand , 1988 .

[9]  David M. Walba,et al.  Total synthesis of the first molecular Moebius strip , 1982 .

[10]  Frank Harary,et al.  Graph Theory , 2016 .

[11]  V. Lynch,et al.  A body-diagonal bond in cubane: can it be introduced? , 1990 .

[12]  F. Harary,et al.  Topicity of vertices and edges in the möbius ladders: a topological result with chemical implications , 1988 .

[13]  J. Sauvage,et al.  Eine Kleeblattknoten‐Verbindung , 1989 .

[14]  K Mislow,et al.  Limitations of the Symmetry Criteria for Optical Inactivity and Resolvability. , 1954, Science.

[15]  R. Guy,et al.  On the Möbius Ladders , 1967, Canadian Mathematical Bulletin.

[16]  J. Simon Topological chirality of certain molecules , 1986 .

[17]  E. Flapan Symmetries of Möbius ladders , 1989 .

[18]  Dennis H. Rouvray,et al.  Graph Theory and Topology in Chemistry , 1987 .

[19]  P. Eaton,et al.  The reactions of 1,4-dihalocubanes with organolithiums. The case for 1,4-cubadiyl , 1990 .