Low-bandgap conjugated polymers enabling solution-processable tandem solar cells

The technology of polymer-based organic photovoltaic (OPV) cells has made great progress in the past decade, with the power conversion efficiency increasing from just a few per cent to around 12%, and the stability increasing from hours to years. One of the important milestones in this progress has been the invention of infrared-absorbing low-bandgap polymers, which allows the OPV cells to form effective tandem structures for harvesting near-infrared energy from the solar spectrum. In this Review, we focus on the progress in low-bandgap conjugated polymers and several tandem OPV cells enabled by these low-bandgap polymers. Specifically, we cover polymer-based tandem solar cells; hybrid tandem solar cells combining polymers with hydrogenated amorphous silicon; and unconventional solar cells. For each of these technologies, we address the challenges and offer our perspectives for future development. Low-bandgap (<1.6 eV) polymers enable polymer solar cells to form effective tandem structures for harvesting near-infrared solar energy as well as reducing thermal loss. This Review summarizes recent progress and provides a perspective on various low-bandgap polymer-containing tandem solar cells; namely, pure polymer–polymer tandem, hybrid polymer–amorphous silicon tandem and unconventional perovskite–polymer tandem solar cells.

[1]  Anna Köhler,et al.  Charge transport in organic semiconductors. , 2012, Topics in current chemistry.

[2]  Gang Li,et al.  Printable Solar Cells from Advanced Solution-Processible Materials , 2016 .

[3]  Weiwei Li,et al.  A real-time study of the benefits of co-solvents in polymer solar cell processing , 2015, Nature Communications.

[4]  Guo-Qiang Lo,et al.  Inverted tandem organic solar cells with a MoO3/Ag/Al/Ca intermediate layer , 2010 .

[5]  Masuki Kawamoto,et al.  Thienoisoindigo-based low-band gap polymers for organic electronic devices , 2013 .

[6]  Yang Yang,et al.  A Robust Inter‐Connecting Layer for Achieving High Performance Tandem Polymer Solar Cells , 2011, Advanced materials.

[7]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[8]  Yang Yang,et al.  Improving Structural Order for a High‐Performance Diketopyrrolopyrrole‐Based Polymer Solar Cell with a Thick Active Layer , 2014 .

[9]  Feng Liu,et al.  Single-junction polymer solar cells with high efficiency and photovoltage , 2015, Nature Photonics.

[10]  Luping Yu,et al.  Understanding Low Bandgap Polymer PTB7 and Optimizing Polymer Solar Cells Based on It , 2014, Advanced materials.

[11]  C. S. Fuller,et al.  A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power , 1954 .

[12]  Gang Li,et al.  Combinatorial study of exciplex formation at the interface between two wide band gap organic semiconductors , 2006 .

[13]  Gang Li,et al.  Efficient light harvesting in multiple-device stacked structure for polymer solar cells , 2006 .

[14]  Christoph J. Brabec,et al.  High Photovoltaic Performance of a Low‐Bandgap Polymer , 2006 .

[15]  John R. Reynolds,et al.  Dithienogermole as a fused electron donor in bulk heterojunction solar cells. , 2011, Journal of the American Chemical Society.

[16]  Yang Yang,et al.  Polymer solar cells , 2012, Nature Photonics.

[17]  Hongzheng Chen,et al.  Nonfullerene Tandem Organic Solar Cells with High Open‐Circuit Voltage of 1.97 V , 2016, Advanced materials.

[18]  Chain‐Shu Hsu,et al.  Synthesis of conjugated polymers for organic solar cell applications. , 2009, Chemical reviews.

[19]  Jun Li,et al.  Enhanced efficiency of polymer solar cells by adding a high-mobility conjugated polymer , 2015 .

[20]  Jianhui Hou,et al.  Ternary Polymer Solar Cells based on Two Acceptors and One Donor for Achieving 12.2% Efficiency , 2017, Advanced materials.

[21]  D. D. de Leeuw,et al.  Poly(diketopyrrolopyrrole-terthiophene) for ambipolar logic and photovoltaics. , 2009, Journal of the American Chemical Society.

[22]  A. Heeger,et al.  Regioregular pyridal[2,1,3]thiadiazole π-conjugated copolymers. , 2011, Journal of the American Chemical Society.

[23]  J. Fréchet,et al.  Control of Polymer-Packing Orientation in Thin Films through Synthetic Tailoring of Backbone Coplanarity , 2013 .

[24]  Hans Wynberg,et al.  Alternate donor-acceptor small-band-gap semiconducting polymers; Polysquaraines and polycroconaines , 1993 .

[25]  Eli Yablonovitch,et al.  Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit , 2012, IEEE Journal of Photovoltaics.

[26]  Yang Yang,et al.  Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer , 2012, Nature Photonics.

[27]  Wenjun Zhang,et al.  Zwitterionic ammonium and neutral amino molecules as cathode interlayer for inverted polymer solar cells , 2014 .

[28]  Shubo Wang,et al.  High efficiency organic/a-Si hybrid tandem solar cells with complementary light absorption , 2014 .

[29]  Mm Martijn Wienk,et al.  Double and triple junction polymer solar cells processed from solution , 2007 .

[30]  Wei Chen,et al.  High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes , 2015, Nature Communications.

[31]  Jin Young Kim,et al.  Air‐Stable Polymer Electronic Devices , 2007 .

[32]  T. Ikeda,et al.  Unique optical and electrochemical properties of π-conjugated electrically conducting copolymers consisting of electron-withdrawing pyridine units and electron-donating thiophene units , 1991 .

[33]  Jianqi Zhang,et al.  All‐Polymer Solar Cells Based on Absorption‐Complementary Polymer Donor and Acceptor with High Power Conversion Efficiency of 8.27% , 2016, Advanced materials.

[34]  C. J. M. Emmott,et al.  Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. , 2017, Nature materials.

[35]  Yang Yang,et al.  Low-Bandgap Near-IR Conjugated Polymers/Molecules for Organic Electronics. , 2015, Chemical reviews.

[36]  A. Heeger,et al.  Semiconducting polymers: the Third Generation. , 2010, Chemical Society reviews.

[37]  Mm Martijn Wienk,et al.  The use of ZnO as optical spacer in polymer solar cells: Theoretical and experimental study , 2007 .

[38]  Yang Yang,et al.  10.5% efficient polymer and amorphous silicon hybrid tandem photovoltaic cell , 2015, Nature Communications.

[39]  Guozheng Shi,et al.  High efficiency all-polymer tandem solar cells , 2016, Scientific Reports.

[40]  H. Ade,et al.  Efficient organic solar cells processed from hydrocarbon solvents , 2016, Nature Energy.

[41]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[42]  M. Wienk,et al.  High-molecular-weight regular alternating diketopyrrolopyrrole-based terpolymers for efficient organic solar cells. , 2013, Angewandte Chemie.

[43]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[44]  J. Brédas,et al.  Relationship between band gap and bond length alternation in organic conjugated polymers , 1985 .

[45]  Yang Yang,et al.  A polymer tandem solar cell with 10.6% power conversion efficiency , 2013, Nature Communications.

[46]  Arvind Shah,et al.  Thin-Film Silicon Solar Cells , 2010 .

[47]  F. Wudl,et al.  Strong acceptors in donor–acceptor polymers for high performance thin film transistors , 2013 .

[48]  Luping Yu,et al.  Recent Advances in Bulk Heterojunction Polymer Solar Cells. , 2015, Chemical reviews.

[49]  Henning Sirringhaus,et al.  Chalcogenophene comonomer comparison in small band gap diketopyrrolopyrrole-based conjugated polymers for high-performing field-effect transistors and organic solar cells. , 2015, Journal of the American Chemical Society.

[50]  Weiwei Li,et al.  Efficient tandem and triple-junction polymer solar cells. , 2013, Journal of the American Chemical Society.

[51]  Mm Martijn Wienk,et al.  Solution‐Processed Organic Tandem Solar Cells , 2006 .

[52]  Yang Yang,et al.  Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. , 2008, Journal of the American Chemical Society.

[53]  Liming Ding,et al.  Bulk heterojunctions push the photoresponse of perovskite solar cells to 970 nm , 2015 .

[54]  Srinivas Sista,et al.  Highly Efficient Tandem Polymer Photovoltaic Cells , 2010, Advanced materials.

[55]  He Yan,et al.  Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells , 2014, Nature Communications.

[56]  Ye Tao,et al.  A thieno[3,4-c]pyrrole-4,6-dione-based copolymer for efficient solar cells. , 2010, Journal of the American Chemical Society.

[57]  H. Ohkita,et al.  Multi-colored dye sensitization of polymer/fullerene bulk heterojunction solar cells. , 2010, Chemical communications.

[58]  Jianqi Zhang,et al.  Synergistic Effect of Polymer and Small Molecules for High‐Performance Ternary Organic Solar Cells , 2015, Advanced materials.

[59]  Y. Yamashita,et al.  Design of Narrow-Bandgap Polymers. Syntheses and Properties of Monomers and Polymers Containing Aromatic-Donor and o-Quinoid-Acceptor Units , 1996 .

[60]  G. Itskos,et al.  Optical Properties of Organic Semiconductor Blends with Near‐Infrared Quantum‐Dot Sensitizers for Light Harvesting Applications , 2011 .

[61]  Yang Yang,et al.  Progress in high-efficient solution process organic photovoltaic devices : fundamentals, materials, devices and fabrication , 2015 .

[62]  Kenji Kawano,et al.  Open circuit voltage of stacked bulk heterojunction organic solar cells , 2006 .

[63]  Antonio Luque,et al.  Handbook of photovoltaic science and engineering , 2011 .

[64]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[65]  V. Dalal,et al.  Novel Hybrid Amorphous/Organic Tandem Junction Solar Cell , 2013, IEEE Journal of Photovoltaics.

[66]  D. Seferos,et al.  Atomistic band gap engineering in donor-acceptor polymers. , 2012, Journal of the American Chemical Society.

[67]  T. Xu,et al.  Ternary blend polymer solar cells with enhanced power conversion efficiency , 2014, Nature Photonics.

[68]  Sonya A. Mollinger,et al.  Very low band gap thiadiazoloquinoxaline donor-acceptor polymers as multi-tool conjugated polymers. , 2014, Journal of the American Chemical Society.

[69]  Pierre M Beaujuge,et al.  Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. , 2010, Journal of the American Chemical Society.

[70]  Geert Brocks,et al.  Small Band Gap Semiconducting Polymers Made from Dye Molecules: Polysquaraines , 1996 .

[71]  Kwanghee Lee,et al.  High‐Performance Integrated Perovskite and Organic Solar Cells with Enhanced Fill Factors and Near‐Infrared Harvesting , 2016, Advanced materials.

[72]  Honggon Kim,et al.  Organic-inorganic hybrid tandem multijunction photovoltaics with extended spectral response , 2011 .

[73]  C. Tang Two‐layer organic photovoltaic cell , 1986 .

[74]  Yang Yang,et al.  An Efficient Triple‐Junction Polymer Solar Cell Having a Power Conversion Efficiency Exceeding 11% , 2014, Advanced materials.

[75]  Gang Li,et al.  25th Anniversary Article: A Decade of Organic/Polymeric Photovoltaic Research , 2013, Advanced materials.

[76]  Vishal Shrotriya,et al.  Efficient inverted polymer solar cells , 2006 .

[77]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[78]  Daniel J. Friedman,et al.  High‐Efficiency III‐V Multijunction Solar Cells , 2011 .

[79]  Yang Yang,et al.  A Selenophene Containing Benzodithiophene-alt-thienothiophene Polymer for Additive-Free High Performance Solar Cell , 2015 .

[80]  Vishal Shrotriya,et al.  Transition metal oxides as the buffer layer for polymer photovoltaic cells , 2006 .

[81]  Sean E. Shaheen,et al.  Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer , 2006 .

[82]  Ye Tao,et al.  Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:2',3'-d]silole copolymer with a power conversion efficiency of 7.3%. , 2011, Journal of the American Chemical Society.

[83]  Sonya A. Mollinger,et al.  Photocurrent enhancement from diketopyrrolopyrrole polymer solar cells through alkyl-chain branching point manipulation. , 2013, Journal of the American Chemical Society.

[84]  Yu-Shan Cheng,et al.  Fullerene Derivative‐Doped Zinc Oxide Nanofilm as the Cathode of Inverted Polymer Solar Cells with Low‐Bandgap Polymer (PTB7‐Th) for High Performance , 2013, Advanced materials.

[85]  S. Wood,et al.  Germanium‐ and Silicon‐Substituted Donor–Acceptor Type Copolymers: Effect of the Bridging Heteroatom on Molecular Packing and Photovoltaic Device Performance , 2014 .

[86]  Luping Yu,et al.  Development of new semiconducting polymers for high performance solar cells. , 2009, Journal of the American Chemical Society.

[87]  Gang Li,et al.  Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells. , 2009, Journal of the American Chemical Society.

[88]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[89]  D. C. Law,et al.  Band gap‐voltage offset and energy production in next‐generation multijunction solar cells , 2011 .

[90]  Yang Yang,et al.  Synthesis of 5 H ‐ Dithieno [ 3 , 2 ‐ b : 2 ′ , 3 ′ ‐ d ] pyran as an Electron-Rich Building Block for Donor − Acceptor Type Low-Bandgap Polymers , 2013 .

[91]  Wei You,et al.  Organic Solar Cells beyond One Pair of Donor-Acceptor: Ternary Blends and More. , 2013, The journal of physical chemistry letters.

[92]  Yang Yang,et al.  High-performance multiple-donor bulk heterojunction solar cells , 2015, Nature Photonics.

[93]  H. Ade,et al.  Fast charge separation in a non-fullerene organic solar cell with a small driving force , 2016, Nature Energy.

[94]  A. Facchetti,et al.  A high-mobility electron-transporting polymer for printed transistors , 2009, Nature.

[95]  T. Kurihara,et al.  π-Conjugated Donor−Acceptor Copolymers Constituted of π-Excessive and π-Deficient Arylene Units. Optical and Electrochemical Properties in Relation to CT Structure of the Polymer , 1996 .

[96]  Efficient hybrid inorganic/organic tandem solar cells with tailored recombination contacts , 2014 .

[97]  Christoph J. Brabec,et al.  Organic tandem solar cells: A review , 2009 .

[98]  Gang Li,et al.  Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells , 2009 .

[99]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[100]  Yuhang Liu,et al.  Efficient Low‐Bandgap Polymer Solar Cells with High Open‐Circuit Voltage and Good Stability , 2015 .

[101]  Jiaxing Huang,et al.  Sticky interconnect for solution-processed tandem solar cells. , 2011, Journal of the American Chemical Society.

[102]  Yang Yang,et al.  Silicon Atom Substitution Enhances Interchain Packing in a Thiophene‐Based Polymer System , 2010, Advanced materials.

[103]  Gang Li,et al.  Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. , 2009, Journal of the American Chemical Society.

[104]  C. A. Walsh,et al.  Efficient photodiodes from interpenetrating polymer networks , 1995, Nature.

[105]  A. Luque,et al.  Handbook of Photovoltaic Science and Engineering: Luque/Photovoltaic Science and Engineering , 2005 .

[106]  Yang Yang,et al.  A Metal‐Oxide Interconnection Layer for Polymer Tandem Solar Cells with an Inverted Architecture , 2011, Advanced materials.

[107]  B. Rech,et al.  Hybrid Organic/Inorganic Thin‐Film Multijunction Solar Cells Exceeding 11% Power Conversion Efficiency , 2015, Advanced materials.

[108]  Alex K.-Y. Jen,et al.  Efficient Polymer Solar Cells Based on the Copolymers of Benzodithiophene and Thienopyrroledione , 2010 .

[109]  John R. Reynolds,et al.  High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells , 2011, Nature Photonics.

[110]  Wolfgang Kowalsky,et al.  Highly efficient organic tandem solar cells using an improved connecting architecture , 2007 .

[111]  Dimitar I. Kutsarov,et al.  Solution processable, precursor based zinc oxide buffer layers for 4.5% efficient organic tandem solar cells , 2012 .

[112]  Yongfang Li,et al.  Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution , 2014 .

[113]  Yang Yang,et al.  Bandgap and Molecular Energy Level Control of Conjugated Polymer Photovoltaic Materials Based on Benzo[1,2-b:4,5-b']dithiophene , 2008 .

[114]  Yang Yang,et al.  A Selenium‐Substituted Low‐Bandgap Polymer with Versatile Photovoltaic Applications , 2013, Advanced materials.

[115]  Xinhua Ouyang,et al.  Efficient polymer solar cells employing a non-conjugated small-molecule electrolyte , 2015, Nature Photonics.

[116]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[117]  Thuc‐Quyen Nguyen,et al.  Regioregular pyridyl[2,1,3]thiadiazole-co-indacenodithiophene conjugated polymers. , 2013, Chemical communications.

[118]  Zhengguo Zhu,et al.  Influence of the Bridging Atom on the Performance of a Low‐Bandgap Bulk Heterojunction Solar Cell , 2010, Advanced materials.

[119]  Christoph J. Brabec,et al.  Organic Ternary Solar Cells: A Review , 2013, Advanced materials.

[120]  Qi Chen,et al.  Integrated perovskite/bulk-heterojunction toward efficient solar cells. , 2015, Nano letters.

[121]  李轩华,et al.  Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells , 2012 .

[122]  Christoph J. Brabec,et al.  Design of the Solution‐Processed Intermediate Layer by Engineering for Inverted Organic Multi junction Solar Cells , 2013 .

[123]  Gang Li,et al.  Doping of the Metal Oxide Nanostructure and its Influence in Organic Electronics , 2009 .

[124]  Yang Yang,et al.  Elucidating Double Aggregation Mechanisms in the Morphology Optimization of Diketopyrrolopyrrole‐Based Narrow Bandgap Polymer Solar Cells , 2014, Advanced materials.

[125]  Gang Li,et al.  10.2% Power Conversion Efficiency Polymer Tandem Solar Cells Consisting of Two Identical Sub‐Cells , 2013, Advanced materials.

[126]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[127]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[128]  Jin Jang,et al.  A high efficiency solution processed polymer inverted triple-junction solar cell exhibiting a power conversion efficiency of 11.83% , 2015 .

[129]  Hans Wynberg,et al.  A new class of small band gap organic polymer conductors , 1992 .

[130]  Weiwei Li,et al.  Small-bandgap semiconducting polymers with high near-infrared photoresponse. , 2014, Journal of the American Chemical Society.